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Abstract

Using the Ocneanu quantum geometry of ADE diagrams (and of other diagrams belonging to
higher Coxeter-Dynkin systems), we discuss the classification of twisted partition functions for
affine and minimal models in conformal field theory and study several examples associated with
the WZW, Virasoro andV; cases.
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1. Introduction
1.1. Purpose and structure of this article

One of the purposes of our article is to present a discussion and a classification of
twisted partition functions for conformal field theories associated with minimal models
and affine models of type ADE, as well as some of their generalizations associated with
diagrams belonging to higher Coxeter—Dynkin systems. The whole discussion is based on
the quantum geometry of these diagrams. Since the graphs themselves provide the necessary
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combinatorial data, we shall avoid as much as possible to make any explicit use of the theory
of affine Lie algebras (or of their finite dimensional counterparts). Actually, we shall not
use much information coming frooonformal field theoryso that our presentation should

be understood by readers with different backgrounds.

Many mathematical tools used in the study of the quantum geometry of graphs were in-
troduced by Ocneanu (in the context of operator algebras) and later “explained” or adapted
in various contexts (for instance CFT but not only) by several authors; this information is
scattered in publications of very different nature. Our presentation starts from very elemen-
tary concepts and shows how one can calculate many (quantum) geometrical quantities of
interest by using rather straightforward algorithms. From the data encoded in ADE diagram
or their generalizations, we remind the reader how the corresponding quantum geometry
is related to the (twisted or not) partition functions in affine models. We then move to
minimal models in particular the unitary ones, discuss the relation with graphs and give var-
ious examples (Ising, Potts and the exceptidtgtA10 model). We also consider twisted
Ws-minimal models.

Our discussion of twisted partition functions for minimal models can be summarized
as follows: to a paikG®, G@) of ADE Dynkin diagrams one can associate six types of
sesquilinear forms on the space of Virasoro characters. These forms can be interpreted, in
terms of minimal models, as partition functions in boundary conformal field tH&bwyith
defects. This classification rests on the possibility of introducing several “torus structures”
for the two diagram&s™Y andG@. Torus structures are parameterized by elements of a
particular base in the Ocneanu algebra of quantum symmetries; a torus structure may have a
single twist, two twists, or no twist at all. The interpretation of what we call torus structures
in terms of defects (or twists) in a conformal field theory with boundary was proposed by
Petkova and Zub€37]. An application of these ideas to the discussion of the different
types of partition functions for minimal models was presented in the publicdai®aj. In
general, twisted partition functions are not modular invariant, and we discuss what is left of
this invariance in various cases. We also describe what happens when the ADE Dynkin dia-
grams are replaced by members of an higher Coxeter—Dynkin system (Di Francesco—Zuber
diagrams in the case of $B)).

We want this article to be almost “self-contained” and we shall have therefore to remind
the reader several facts or constructions that, in principle, can be found in the literature. For
this reason we make here a short list of several specific results of the present paper, results
that, to our knowledge, cannot be found elsewhere: the use of induction/restriction matrices
to obtain all twisted partition functions (with one or two twists), the use of the multiplication
table of the algebra of quantum symmetries @cin order to obtain identities between
toric matrices, the 1% 12 multiplication table of O¢Eg), the list of toric matrices with
two twists (and the corresponding partition functions) for the affigenodel, the behavior
of these functions with respect to the action of the modular group, a general discussion of

1 While finishing the redaction of our paper, we received the recent prdpdhtthe authors use a concept of
twisted minimal model which is very similar to ours, they do not discuss the same examples (besides the Potts
model) and do not consider generalized Coxeter—Dynkin systems, but they provide a nice lattice realization of
the twisted SW2) models. The two papers share therefore several features but focalize nevertheless on distinct
aspects of the same general theory.
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the various types of twisted partition functions for minimal models (see, however, the pre-
vious footnote), several explicit examples of twisted versions of Virasoro minimal models,
for instance A10—Eg) and several examples of twistdtlz-minimal models, for instance
(As=Es).

Although many of the results and formulae that we mention belong to the lore of CFT (in
particular, affine WZW models or minimal models), we decide to adopt a presentation that
uses graphs (or pairs of graphs) as primary data, so that we can avoid, as much as possible,
to make use of results coming from the theory of Virasoro algebra or of affine Lie algebras;
we therefore hope that the reader will find our presentation to be of independent interest.

1.2. Torus structures of Dynkin diagrams and their generalizations

Here is a brief presentation of the various structures that will be discussed later in this
paper.

To a given Dynkin diagrand (or to a member of a higher Coxeter—Dynkin system) one
associates the complex vector space (also céllespanned by the vertices of this diagram.

In some cases (in particular for all diagrams belonging toAtseries), this vector space

G possesses an associative (and commutative) multiplication law with positegral
structure constants and it is called the “graph algebra”; one also says that the diagram (or
the corresponding vector space) admits “self-fusion”. In the case of ADE diagrams, whether
or not the vector space of the diagram(with Coxeter numbek) admits self-fusion, it

is anyway a module over the graph algebra of the diagiam, with the same Coxeter
number. More generally, i.e., for higher Coxeter—Dynkin systems, the vector &pisca
module over a particular graph algebra that we gdily).

Following Ocneany28], to every diagranG (with or without self-fusion) belonging
to a Coxeter—Dynkin system, one can associate a bi-al§éhta By using a particular
scalar product, it is easier to think thBG is actually a bi-algebra (a vector space with
two compatible associative algebra structures). There are two—usually distinct—block
decompositions for this bi-algebra (see later). Blocks of the first type are labeled by points
of a graph that we cald(G). Blocks of the second type are labeled by points of a graph
that we call O¢G). The vector spaces spanned by the vertices of these two graphs are
themselves endowed with natural associative algebra structures that we denote by the same
symbol as the graphs themselves. The algebi@), coincides, forG of type ADE, with
the graph algebra of a particular member of théamily, and it is a commutative algebra,
but OdG), also called “algebra of quantum symmetries’(ofs not always commutative.

The algebra of quantum symmetries(@g, like the vector spacé itself, comes with a
particular basis and its multiplicative structure is encoded by a graph callgé)@dose
vertices are in one-to-one correspondence with the distinguished generators. In the particular
case wher& is a member of thel series, the algebrad(G), Oc(G) andG coincide.

We calli, j, ... the vertices ofA(G), a, b, ... the vertices ofG andx, y, ... the ver-
tices of O¢G). Remember that “vertices” should be thought of as elements of the various
(distinguished) basis for the corresponding vector spaces. We denotthbyidentity of

2 This bi-algebra should be, technically, a weak Hopf algebra (or quantum groupoid), but this structure, as far
as we know, has only been checked in a few cases, and we are not aware of any general proof (see[18jvever,
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Oc(G). The vector spac€ is a module overd(G), and the algebra Q6) is abi-module
over A(G); this bi-module structure is encoded by a set of matrices (toric matrices) defined
as follows:

i-x-j= Z;y(‘/vx,y)ijy-

A torus structure for the diagra is (by definition) specified by the choice of a matrix
W,.y. If the dimension of O@G) is s, the number of independent toric structures is a priori

52, but very often we may have degeneracies, in the sense that we may obtain the same toric
matrix for different choices of the paix, y).

It is convenient to introduce the following terminology: the undeformed torus structure
corresponds to the choice of the mati o, a deformed torus structure along one “defect
line” specified byx corresponds to the choice of the mati . (or Wy o) and a deformed
torus structure along two defect lines specifiedd®ndy corresponds to the choice of the
matrix W, . It is convenient to se,=W, ¢ and in particula¥o=Wg o.

1.3. Frustrated (or twisted) partition functions for affine models

1.3.1. Twisted partition functions for affine models

For affine models characterized by the affine Kac—Moody algebra ofsiy@ (chiral
algebra), the classification of modular invariant partition functions is well knfyr,
and was shown to be in one-to-one correspondence with ADE Dynkin diagrams. More
recently[28], it was shown that if the theory is associated with the Dynkin diagfarits
modular invariant partition function is given &6 = xWo,0x, wherey is a vector of the
complex vector spaéeC” and Wo,0 is the toric matrix associated with the origin of the
Ocneanu graph of the diagrath This characterization of partition functions uses only the
(quantum) geometry of the diagrathand does not refer to the theory of affine algebras; in
this approach, for instance, the fact thatould be interpreted as a character of an affine Lie
algebra is not used; in particular, modular invariance is implemented by finite dimensional
matrices representing $2, Z).

As shown in36,37], the other partition functions of typgé, = x Wo . x, or more generally
Z.y = xWx yx, can be interpreted as twisted partition functions in a boundary conformal
field theory (boundary “of typel5), in the presence of defect lines of typandy. A simple
algorithm for the calculation of the matric® , was presented if9] (where the example
of Eg was chosen) and explicit results for all ADE cases are givéhlih(see als¢12] for
generalizations to higher Coxeter—Dynkin systems). The definition of ma#iggsn [37]
looks different from ours (we use the description of the bimodule structure @ Qaver
A,_1) but it can be shown to be equivalent (see our commeBeiction 4.2. The matrix
Wo=Wo,o is a modular invariant: it commutes with the generat®@nd 7, representing
SL(2, Z) in the vector space spanned by the vertices of the gigph. The corresponding
sesquilinear form is the modular invariant partition function. The other matiGgsare
associated with partition functions that are not modular invariant.

3 If « is the Coxeter number of, n denotes the cardinality of the set of vertices of the diagrm;, i.e.,
n = k — 1 for a diagranG of type ADE.
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For affine models characterized by the affine Kac—Moody algebra oftyp®, the story
is very similar. Herey is still a vector of the complex vector spaCé butn now denotes the
cardinality of the set of vertices of a grapt{G) generalizing thei,_1 Dynkin diagram. In
the case of S(B) for instance, the ADE diagrams are replaced by the Di Francesco—Zuber
diagrams, but we can again define the bi-algé¢hifeand the two related associative algebras
A(G) and O¢G). Torus structures on these diagrams and corresponding twisted partition
functions are defined as before.

1.3.2. Twisted partition functions for minimal models and their higher analogs

Minimal modelslt has been known for quite a while (see for instance the poR that
the classification of modular invariant partition functions for minimal models, unitary or
not, also follows a kind of ADE classification, in the sense that every partition function de-
scribing a minimal model can be associated waithair of Dynkin diagram$ (G, G@).
In our set-up, this affirmation can be precisely formulated as follows: the partition function
of a minimal model of typeG ™, G@) can be obtained as the sesquilinear form associated

with the matrixWé)lg ® W(()% where these two matrices, respectively, describe the unde-

formed torus structures of diagrar6$? andG®@. It is also well known that the obtained
minimal model is unitary if and only if the Coxeter numbetsandk of the two diagrams
G® andG®@ just differ by one unit. The usual situation for minimal models corresponds
therefore to the choice of the two trivial torus structures for the graphsandG@; the
possibility of replacing these two torus structures by more general ones (i.e., mwﬁées
andW(()ﬁz()J by matricesI/V,Ei)y1 andW)Ef?yz) leads to a natural classification of twisted partition
functions for minimal models.

Analogs of minimal models for general Coxeter—Dynkin systdins general case of
minimal models corresponds to the choice of two graphs of typ@g{ie., two arbitrary
Dynkin diagrams of type ADE) but one can also replace the two ADE diagt@sand
G @ by members of a higher Coxeter—Dynkin system (for example the Di Francesco—Zuber
diagrams of type S(B)) and obtain in this way similar classifications. Here the notion of
“minimal model” is generalized and the corresponding partition functions, twisted or not,
can be interpreted in terms of minimal models ¥y, algebras (in particularn/; for the Di
Francesco—Zuber diagrams).

1.4. A brief historical section

Here we make a long story short and gather only a few references. Many others can be
found by looking at the quoted material. Apologies for omissions.

The study of quantum geometry of ADE graphs was, at the beginning, presented as a
nice example illustrating the general theory of “paragroups” and “Ocneanu [28lsThis
class of examples and its generalizations turned out to be very rich. Much of the theory
was developed by Ocneanu himself and described (sometimes in a rather allusive way) at
several meetings and conferences during the years 1995-2000 (for irf&aRcas far as
we know, the first published material on this theory28].

4 This property received if23] an interpretation in the framework of the theory of local nets of von Neumann
algebras.
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From the physical side, many relations existing between ADE graphs and physics (models
of statistical mechanics) had been already observed and investigated by Pasquier in his
thesis (seg31]). A classification of modular invariant partition functions for conformal
field theories of SI?2) type was obtained at the same time, i.e., at the end of the 1980s,
by Cappelli et al[6,7] in a celebrated paper. Later, Gannon (and collaboraj@@$)xcould
obtain similar results for conformal field theories based on more general affine Kac—-Moody
algebras.

Di Francesco and Zuber made the crucial observdfibpthat the SW3) classification
could be related to a family of particular graphs (that we call the Di Francesco—Zuber
diagrams), in a way similar to the relation existing between th€2gdassification and
the ADE Dynkin diagrams. Several precisions concerning this classification were brought
by Ocneanu at the Bariloche Schof@q], see also the lectures of Zuber and Evig)3] at
the same school).

After the unpublished work by Ocneanu concerning the ADE themselves, it was more or
less clear that the existence of modular invariant partition functions associated with these
diagrams (or their generalizations) was only the tip of a theoretical iceberg. For instance,
from the existence of several toric structures on ADE diagrams, it was clear that the modular
invariant partition function was only describing a particular point of @x and that other
“interesting” partition functions claiming for a physical interpretation existed in the theory.

A simple algorithm allowing one to obtain the toric matridés o was explained irf9],
following the example of£g, and, as already mentioned, a physical interpretation of the
W,y interms of conformal field theory with a boundary and defects lines was giJ&iJn
Using the techniques explained[B], a systematic study of all ADE cases was performed
in [11] and several interesting cases belonging to the€3stmily were analyzed ifil2].

In [19], several properties of the twisted partition functions were interpreted in terms of
bimodules for Frobenius algebras. More recently (84é and footnote 1), it was shown
how to build a lattice realization of these models.

2. Quantum geometry on ADE diagrams and their generalizations
2.1. From the classical to the quantum situation (in a nutshell)

Classical situationRepresentation theory of Lie groups (&Y SU(3), etc.) and their
subgroups can be encoded by graphs. These graphs tell us how to decompose the repre-
sentations obtained by tensor multiplying irreducible representations (irreps); actually it is
enough to know what happens when one tensor multiplies some irrep by the fundamental
representations. Representation theory of38is encoded, in this way, by the gragh, (it
describes the coupling of an arbitrary spin with a spin 1/2). Representation theory3)f SU
is characterized by two generalizetl,, diagrams differing only by orientation (multipli-
cation by the fundamentals=3 (1, 0) of 3 = (0, 1)). Such a graph defines an associative
algebra (the “graph algebra”) which is the Grothendieck ring spanned by the irreducible
characters of the group. Notice that the graph algebra of a subgroup is a module over the
graph algebra of the group and that the structure constants characterizing these associative
algebras, or modules, are positive integers.
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Quantum situationin the case of S(2), truncating the diagram, leads to the usua,,
Dynkin diagrams. In the case of $8), truncating one of the two diagrams,, leads to the
Di Francesco—Zuber diagrams of tydeThis can be generalized to $4) [38]. The vector
space spanned by the vertices of ahgiagram, for a given SWV) system, always possess
aZy grading (calledvV-ality). For instance, in the case of the usdal Dynkin diagrams,
vertices are either “even” or “odd”. All these graphs “of tyg&have self-fusion (an asso-
ciative multiplication law with positive integral structure constants), but they are not the only
ones enjoying this property. The obtained graph algebras are associative and commutative
algebras with a particular basis, they are denoted by the same symbol as the graph itself. For
a givenN (the choice of SWN)), the first task is to determine all those diagrams which si-
multaneously admiv-ality, generate a module (with integral structure constants) over some
associative algebras of typkand also admit self-fusion. The next task is to identify all those
diagrams (with-ality) which do not necessarily enjoy self-fusion, but which nevertheless
generate a module (with integral structure constants) over one of the algebras defined by the
previous family. A list of requirementghat a given diagram should obey in order to be a
member of some “generalized Coxeter—Dynkin system” was givi@8inbut as mentioned
by Ocnean(i29] (see als¢30]), this list was not complete, in the sense that a local condition
of cohomological nature should also be imposed on its set of “cells”; this is not discussed
here.

2.2. The classical and quantum systems of diagrams for SU(2) and SU(3)

The classical SU(2) systei@hoose a finite subgroup of $2J, i.e., one of the so-called
binary polyhedral groups. The fundamental representation is again two-dimensional and
the multiplication of any of its irreps by the fundamental is encoded by the corresponding
diagram of tensorization, which, for the binary groups of symmetries of platonic bodies
coincides with the affine exceptional Dynkin diagraﬁgé), E%l), Egl) (McKay [25] corre-
spondence). The vector space generated by the set of irreps of such a subgroup is a module
over the algebra generated by the set of irreps a@$teduce irreps from the group $2)
to its subgroup and use tensor multiplication of representations). In diagrammatic parlance,
we may say that affine ADE diagrams are modules oveAthaliagram. Irreps of a binary
polyhedral group can also be tensor multiplied and decomposed into irreps (with positive
integral structure constants). In other words, affine ADE diagrams have self-fusion. In par-
ticular, one of the vertices; acts as the unit, we calldy. For each of these diagrams, call
G1 the adjacency matrix; its highest eigenvalu@alled the Perron—Frobenius norm of the
diagram) is equal to 2 in all cases and it coincides with the dimension of the fundamental
representation. For a given diagram, dimensions of the irreps are given by components of the
(unigue) normalized eigenvector corresponding (it is normalized to 1 at the unit point
0p). The table of charactets happens to be equal to the matrix of eigenvectors (properly
normalized) ofG1. This is a way to express the general McKay correspondence in the case
of SU(2).

5 For instance, when looking for modules over commutative algebras associated digigrams, one should
impose that they have the same generalized Coxeter numbers.
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The quantum SU(2) systeMow we move to the quantum case and replaceithedia-
gram byA,, diagrams seen as truncatég, diagrams. These diagramsg have self-fusion.

The next task is to determine those diagrams (with bi-ality) that generate modules over
the A,: we get theA, D and E diagrams. For examplés is an A1; module,E7 an Ay7
module, andEg an A2g module. Some of them have self-fusiofy,( Deve, Es, Eg), Others

do not Doqgg, E7). A diagramDeye actually determines a two-parameter family of associa-
tive structures, but only two of them have structure constants which are positive integers
(self-fusion); these two structures can be identified when we permute the two end points
of the Deyen fork; when such a phenomenon appears, the algebra of quantum symmetries
Oc(G), to which we shall return later, appears to be non-commutative.

The norm of a diagran is found to be8 = 2 cos(2r/k), wherex =n + 1if G = A,
or whenG is a module overd,,. Note that 1< B8 < 2 (see alsd22]). The quantum
dimensiong; dim, of the vertices ofG are obtained or defined as the components of the
normalized Perron—Frobenius eigenvector (which corresponds to the eigefiyaker
every ADE diagram, i.e., for every membe@rof the system that we may call “the $2)
Coxeter—Dynkin system”, the integeris called theCoxeter number of the diagrarAll
these diagrams (with or without self-fusion) can also be labeled by an integalied the
level of the diagranand defined by = « — 2. A description of the ADE diagrams in terms
of representations of quantum subgroups (a quantum analog of the McKay correspondence)
was discussed by Kirillov and OstrjR4] in the framework of modular categories.

The classical SU(3) systefRepresentation theory for finite subgroups of(Ss fully
characterized by a family of diagrams that have self-fusion and generate modules over the
graph algebra of the generalized,, diagram of SU3). All of these diagrams have a norm
equal to 3.

The quantum SU(3) systetNow we move to the quantum and repladg, by Ay
(truncatedA, diagrams). Thesgl; have self-fusion. The next task is to determine those
diagrams (with tri-ality) that are modules over tig: we get the Di Francesco—Zuber
diagrams. Some of them have self-fusion and others do not. The system contains in particular
the A series and a finite number of “genuine exceptional” ca8gsh and&21). The other
diagrams of the system are obtained as orbifolds of the genuine diagrams (exceptional or
not) and as twists or conjugates (sometimes both) of the genuine diagrams and of their
orbifolds, seq15,29,38,39] All of them have a norng equal to 1+ 2 cos(2r/«k). Note
that 2 < B < 3. This again defines an integercalled the “generalized Coxeter number”
or “altitude” (like in [15]). The levelk of adiagrambelonging to this family is defined by
the relationk=« — 3. The truncatet, diagrams that we calll; are of levelk (see the
footnote in the next subsection). Even when it exists, the determination of the graph algebra
of a given diagram is not always unique; a phenomenon similar to what happens for the
Devendiagrams (see a previous remark) occurs for instance in the casefgfdiagram of
the SU3) system.

2.3. General notations and characteristic numbers for generalized Coxeter—Dynkin
diagrams

The classical representation theory of @ can be encoded by a set®f— 1 diagrams
(with oriented edges and infinitely many vertices) generalizingdthediagram of SW2);
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there is one such oriented diagram for each fundamental representation. For definiteness,
we choose the basic representation of( 8 its Young tableau is given by a single box.
A given system of diagrams is then labeled by an intégeit has the same value for all
diagrams of a system. For ADE Dynkin diagrams,= 2, the (dual) Coxeter number of
SU(2). For Di Francesco—Zuber diagramé,= 3, the (dual) Coxeter number of $8J.
The generalized Coxeter number (altitude) of a diag€aims calledx in our paper, it can
be defined directly from the norof G; for usual Dynkin diagrams, altitude is the usual
dual Coxeter number. It is useful to define the root of unigexp(in/«), so thatg? = 1.
The levelk of a givendiagrambelonging to a given system of type &) is defined by the
relationk=« — N. More generally, one could probably define generalized Coxeter—Dynkin
systems for any Lie group (the case @Wcorresponding to the ADE system), but such a
theory remains to be investigated.

As we know, for a given system, members of théamily (call them.4,, with k standing
for the levef) are obtained as truncatéd,, diagrams. They can be related to a particular
category of representations of quantum groups at roots of unity, but we shall not discuss
this aspect here.

A diagramG of level k belonging to such a generalized system is always such that the
vector space spanned by the set ofiityertices is a module over the membég of the
A family with the same levél(the number of vertices of this corresponding diagram of
type A will be calledn, som = n whenG is of type A. Notice that: = k + 1 for usual
A, = A Dynkin diagrams, but = (k + 1)(k + 2)/2 for Di Francesco—Zuber diagrams
of type Ay.

The list of exponent$r} of a graphG of type ADE can be defined directly from the
table of eigenvalues of the adjacency mattix of G: these eigenvalues are of the form
2 Cogrrr/k). For instance, in the case f%, from the list of eigenvalues

T 4 5r Vés
{2005(1—2) 2003(12> 2Co 5(12) 2Cos<12>
8 117
2Cos<12> 2Co s( lZ)}

we read the exponent§, 4, 5, 7, 8, 11}. Notice that exponents also refer to particular ver-
tices of the corresponding diagram of tydewith the same Coxeter number (fé, see

the circled vertices ifrig. 3, and remember that our indices for labeling vertices are shifted
by 1). The list of exponents- = (r1, r2)} of a graphG belonging to a generalized system
can also be defined directly from the adjacency mattixof G. For Di Francesco—Zuber
diagrams (i.e. the S{3) system), they can be read from the following general formula
giving the eigenvalues a§1 [15] (14 e2771/k 4 2in(r+r2)/ky jg2in(2r1+12)/3¢ For instance,

6 Another favorite notation isi**™, the upper index referring now to the altitude. We shall stick to the notation
using level as a subscript.

7 Truncation is made by removing the parts of the diagram with level higheiktvaimat we obtain is a truncated
Weyl chamber (“a Weyl alcove”).

8 Warning, in the S2) case, we have two notations for the same objects since the subindgxefers usually
to the number of vertices (the rank), but in this particular cksen — 1, so thatd,—,—1 = A,.
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the exponents ofs are
{(1LD,3B3,(13,43,.61,6B4,382,(1,6),41D,(14, 23,6 1)

Here again, exponents refer to particular vertices of the corresponding diagram of type
A with the same Coxeter number and remember that indices labeling vertices are usually
shifted by (1, 1). Exponents appear in the expression giving the corresponding modular
invariant partition function (see the examplesHafor of £ in Sections 3.1.5 and 3.2nd

in the usual (or generalized) Rocha—Cariddi formulae.

2.4. Paths, essential paths, the bi-algelfit@ and the algebra O@) of quantum
symmetries

We then move from the geometry of the “spadg”to the geometry of the paths on
G, a procedure quite common in quantum physics! Path& arenerate a vector space
Pathswhich comes with a grading: paths of homogeneous grade are associated with Young
diagrams of SUN). In the case of S(2) this grading is just an integer (to be thought of as
a length, a Young frame with a single row, or as a pointipf= Ax—,_1).

What turns out to be most interesting is a particular vector subspaPatb$whose
elements are called “essential paths” (we refdBt@8], see als§10] for a definition). The
space of essential patEssPathss itself graded in the same way Rathsand one may
consider the graded algebra of endomorphisms of essential fat#&End; (EssPathy =
® j—0.,—1ENA(EssPath$).

By using the fact that paths on the chosen diagram can be concatenated, one may de-
fine anothermultiplicative (associative) structure on the vector spce(see[28] for a
definition). This leads to hi-algebra3G which turns out to be semi-simple for both struc-
tures, but existence of a scalar product allows one to transmute one of the multiplications
into a co-multiplication compatible with the other structure and one obtains in this way a
bi-algebra. This bi-algebra is sometimes called, by Ocneanu “algebra of double triangles”
(DTA), a terminology coming from the graphical representation of the corresponding ele-
mentary matrices by diffusion graphs or, dually, as DTA.

For these two associative laws on the same space, that we may call “composition law”
and “convolution law” (or “vertical law” and “horizontal law”), there are two—usually
distinct—block decompositions f#G (ideals corresponding to simple blocks). The first
type of blocks, labeled by, corresponds to the grading associated with peifts Ay, i.e.
in the case of S(P), to the lengths of the paths, and, more generally, to Young diagrams of
SU(N); interpretation of this first block structure is therefore clear from the definitidof
as sum of algebras of endomorphisms. The second block decomposition can be interpreted
as follows: ADE diagrams (or their SW) generalizations) may have classical symmetries,
for instance, allA,, diagrams have an obviou& symmetry; these classical symmetries
(action of a finite group on vertices) can be promoted to the level of paths in an obvious way
and therefore lead to particular endomorphismgsgPathsbut there are more “quantum
symmetries” acting on the space of essential paths than classical symmetries: irreducible
quantum symmetries (call them) are precisely associated with the blocks3af for the
second multiplication. We call Q&) the algebra spanned by the minimal central projectors
associated with the later blocks, using the first multiplicative structureGis called the
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“algebra of quantum symmetries”. In all cases it is an associative algebra with two generators
(called “left” and “right” generators) and the Cayley graph of multiplication by these two
generators, called the “Ocneanu graph@fis also denoted by Q). The linear span

of these generators are called left and right chiral parts, and their intersection is called
“ambichiral”.

The numbet of (simple) blocks ofBG for its first multiplication, isn (the number
of points of the corresponding diagram); dimension of these blocks will be calikéd
j = 1,...,n. The number of (simple) blocks &G for its second multiplication, will
be calleds (the number of points of the corresponding Ocneanu diagram); dimension of
these blocks will be called,, x = 1, ..., s. Existence of two block decompositions for
the same underlying vector spaBB& leads obviously to the number-theoretical identity
(quadratic sum rule)y ., , dl? = szl’sdf. In all cases explicitly studied so far, an
unexpected linear sumrule also holds (in some cases one hasto introduce a natural correction
factor).

The direct determination of the algebra (@9, using the definition provided by Oc-
neanu, is not an easy task, and the corresponding graphs were first known (published)
for the SU2) Coxeter—Dynkin systerf28]. This algebra is not always commutative. One
of the purposes 0f9,11], besides the calculation of the toric matrices, was actually to
give an algebraic construction providing a realization of aélgebraOc(G) in terms of
graph algebras associated with appropriate Dynkin diagrams. In many relatively easy cases
where G admits self-fusion and is also such that(Og¢ is commutative, the algebra of
quantum symmetries is isomorphic with ® ; G, whereJ is a particular subalgebra of
the graph algebra of;; the tensor product sign, taken “abovg& means that we iden-
tify au® b anda ® ub wheneveru € J C G. In those easy cases, and as shown in
[12], the subalgebrd can be determined from the modular properties of the g@ph
we shall remind the reader how this is done in a later section. Paradoxically, for Dynkin
diagrams, and besides tllg themselves, the “simple” cases happen to be those where
is an exceptional diagram equal Big or Eg. We refer to[11] for a discussion of all ADE
cases anfll2] for a discussion of a number of cases belonging to the Di Francesco—Zuber
system.

2.5. The matrice¥;, F;, G4, Eq, Sy and W,

2.5.1. Fusion matrices: th¥;’s

Fusion matrices are defined fdy, diagrams. They are square matrices of dimension
called N;. They are associated with the verticgswith i € {0, ...,n — 1}, and provide
a faithful representation of the graph algebra. Heigeactually a multi-index referring to
a Young frame of SV) and the cardinality of the indexing setnas When the Young
frame refers to a fundamental representation (only one column), this fusion matrix is the
adjacency matrix of the corresponding oriented diagram. Other mat¥icase obtained
from the fundamental ones by applying the particular recurrence relation specifi¢ SU
Example: in the case of SB), each Young diagram is an horizontal string of boxes and is
characterized by its length; the matni is the adjacency matrix ofly = A,,—x+1 andNg

9 This number is infinite in the classical situation (finite subgroups of Lie groups).
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is the unit; the recurrence relation (coupling of spins) is
Nit1 = N1iN; — N;_1.

MatricesN; have indicegj, k) referring to vertices afd;. These matrices generate a (com-
mutative) associative algebra isomorphic with the algebra of the givellagram. The
indicesi, j runs from 0 ton — 1 but we shall sometimes use indices i +1,s = j+ 1
running from 1 to:. In the case of S(B), the index; labeling vertices; of the 4, diagram

is a pair(j1, j2), with j1, jo > 0 andji + j» < k. The identity isNg o and the matrix
N1,0 denotes the adjacency matrix of the (oriented) diag€anihe recurrence formula
reads

Nji»=0 if j1<0 or j» <0, Nj0=NioNj—10— Nj_21,
. . T
Nji,j = N1oNji-1j, = Nji-1,jo-1 — Njj—2,j+1 if j2#0, No,jy = Nj o
2.5.2. Fused adjacency matrices: thgs

The module property (external multiplication) of the vector space associated with a
diagramgG, of level k and possessing vertices, with respect to the action of the alge-

bra A, is encoded by a set of matricesF;, i = 0,...,n — 1, of dimensiorm x m,
sometimes called “fused graph matrices” (a somehow misleading terminolagyl)=
Zb(Fi)abUb-

If G is of type A, we haven = m, F; = N; and we are done. More generally, cajl the
unit matrix of dimensiom x m, andF; the adjacency matrix af. For usual ADE diagrams,
each edge carries both orientations &ads symmetric; for generalized diagrams, this is not
so. Other matrices; are then obtained by imposing the same recurrence relation as for the
fusion matrices. Matriceg; have indicesa, b) referring to vertices of;; they characterize
G as amodule over the correspondidgraph. They are also in one-to-one correspondence
with the minimal central projectors diagonalizing one of the two associative structures of
the bi-algebraBG, in other words they characterize the corresponding blocks and give their
dimensionst; = >, ,(Fi)a,»-

In the case of S(B) diagrams, remember that indicgsare pairs(j1, j2) and that
fused adjacency matrices;, associated with any grapti of a given level, are deter-
mined by the same recurrence relations as for matriées= N;, ;, associated with
the graphA of the same level; only the seed is differeAt=G1, the adjacency matrix
of G.

2.5.3. Graph matrices: th&,'s

The diagramG sometimes admits self-fusion. In those casesih@ear generators
o, Of G (a runs from O tom — 1) are represented by commuting matricess, of di-
mensionm x m spanning a faithful representation of the graph algebra. WeGzaH Fo,
G1=F; and more generally;, the set of matrices (one for each vertex @f repre-
senting faithfully the multiplication of vertices. Warning: with the exceptionFgfand
F1, the matricesF; and G, are distinct (in the case ofl diagrams, of course, they are
identical).
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2.5.4. Essential matrices: th&,’s

By definition, them essential matriceg,, are rectangular matrices of dimension
m defined by setting? for every vertexa of G, (Ep)ip=(Fi)q,p- These are rectangular
matrices of dimensiorin, m). Matrices E, display “visually” the structure of essential
paths emanating from a vertexon the diagranG. One can check that, for graphs with
self-fusion,E, = EoG,. The particular matrixtg is usually called “intertwiner”, in the
statistical physics literatuf@2].

As we know, vertices of the diagraéi should be thought of as an analog of irreps for a
subgroup of a group; the irreps of the bigger group are themselves represented by vertices
of the correspondingt graph. In this analogy, the first column of each matfjxwould
describe the branching rule ef with respect to the chosen subgroup (restriction mecha-
nism). In the same way, the columns of the particular essential m&grixould describe
the induction mechanism: the non-zero matrix elements of the column labeteddiyus
what are those representationsghat contains;, in their decomposition (for the branching
A — G).

2.5.5. Matrices for O@G)

Since we have a bi-algeb#3G we have also a set of matricds which characterize
the blocks of the other associative structure (one for each point of the Ocneanu graph). In
“simple cases”, likeEg or Eg, the matrixS, associated with the vertex= a ® ; b of the
Ocneanu graph is simply equal to the prodGgiG,. The dimensioni, of the blockx is
obtained by summing the matrix elementsSgf

2.5.6. Toric matrices and generalized toric matrices: Wigand W, ,
We know thatA4; acts onG, but A; also acts (from both sides) on @¢). In gene_ral,
Oc(G) is an A, bimodule and the action is encoded as followysr; = Zyeoqc)(wxy)ljy,

with x, y € Oc(G) andt;, t; € Ag. In general, one obtainsx s = 52 matricesWyy of
dimensions x s (many of them may happen to be equal). In particular, one obtains the
matricesW,=W,o and the matrixWy = Wyo associated with the origin of the Ocneanu
graph. Practically, once we have therectangular matriceg,, of dimensiom x m, we
first replace by 0 all the matrix elements of the columns labeled by veditiest do not
belong to the subset of the graphG, call E;eo' these “reduced” matrices and obtain, for
each point! x = a®b of the Ocneanu graph @), a “toric matrix” W, = E,(E%T, of
dimensiom x n.

We will explain inSection 3.1.%10w to generalize the previous method to obtain all the
toric matrices, , (“first algorithm”). Actually, theW, , can also be obtained from tf,,
determined as above, by working out the multiplication table af®dthis is our “second
algorithm”). All we have to do is to decompose the produst y on the basis generators:
if x-y=X.C; zwith x,y,z € Oc(G) thenW, , = ¥.C; ,Wo . This can be seen as
a compatibility equation; indeed, the actionf is central, so;; - x-7; = x-7;,-0- 7;

10 The reader should be cautious about the meaning of indices: our iridicesrefer to actual vertices of the

graphs but the numbers chosen for labeling matrix rows and columns depend on some arbitrary ordering on these
sets of vertices. Moreover, our labelanda start from 0, not from 1.

11 In some cases;, may be a linear combination of such elements.
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implies
Ty (Way)'iy = x - (Z:(Woe)';2) = Zo(Woo)jx - 2 = (W) 2,C3 Ly
= X, (Z.C) ,(Wo.)')y.

Notice that linearity of this relation implies in particuldify,o = W, ,. Moreover, when
Oc(G) is commutative, i.exy = yx, we haveW, , = W, , (but the later equality does not
imply the former).

From the toric matrice®yy describing the bimodule structure of (@), one obtains the
corresponding twisted partition functions as sesquilinear forms in the complex vector space
C*. Introducing a basig of vectors(y ;), usually interpreted as characters, we write

Zx,y = )_(Wx,yX

andZ, = Z, o. The modular invariant partition function % with 0 = 0®0. The example
of Eg is discussed ifsection 3.1

2.6. Modular aspectsS, T and Sl(2, Z)

2.6.1. TheS operator

Any finite subgroup of SI?) can be associated with an affine ADE graph, in such a way
that the normalized Perron—Frobenius vector of the graph gives the list of dimensions for
irreps of the finite subgroup. This observation, known as McKay correspondence, was later
generalized by observing that the whole table of characters of a finite subgroug2f SU
can be identified with the list of eigenvectors (properly normalized) of the adjacency matrix
of the corresponding affine Dynkin diagram (generalized McKay correspondence). For any
finite group, not necessarily a subgroup of(8)) the commutative and associative algebra
generated by irreducible characters (multiplication of representations) can be realized by a
set of commuting matrices (the analog of our matriég} and the table of characters can
be reconstructed, without using the notion of conjugacy classes, by diagonalizing simul-
taneously this set of (commuting) matrices: the character takse properly normalized
diagonalizing matrix. The following “quantum construction” is analogous.

In the quantum case (i.e. diagrams ADE), there is no group, there are no conjugacy
classes and no table of characters. Nevertheless, there is an adjacency matrix for the chosen
diagram. The matri$ that we are looking for is precisely the quantum analog of the table of
characters, and is obtained, for each lé\ae the (properly normalized) table of eigenvectors
for the adjacency matrix of the diagrady. The bonus in the quantum situation is that one
can interprefS as one of the generators of the modular group in a particular representation;
this representation of SR, Z) appeared in a work by Hurwif21] about a century age.,
interpreted as a quantum table of characters (or a “quantum Fourier transform”) implements
therefore a quantum analog of the McKay correspondence. For illustration, the modular
matrix S for the A11 diagram is determined in this way iBection 3.1.8 The general
expression fol§ = s, in the case of the S@) system, withc = k + 2, is

/2 i +D(+1
Sij = —sin(nw> for 0<i,j<k-—2
K K
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2.6.2. SI2,7)

A projective representation of $2, Z) can be defined with two matricesandr and a
phaser which are such thatst)® = 352, s2 = €, Ct = tC andC? = 1. The matrixC is
called “conjugation matrix” andthe “modular twist”. Such representations of the modular
group can be obtained on the space generated by the simple objects in any braided modular
categonf1]. The general formula for the modular phasgis €27/24with ¢ = (k—N)d/«.

In the present context, i.e. generalized Coxeter—Dynkin diagrams of typ¥)SkJis the
altitude (generalized CoxeteR,— N = k is the level and/ = dim SU(N). Therefore,
¢ = 3k/(k + 2) for SU(2) andc = 8k/(k + 3) for SU(3). The modular phase is then
equal to &/4 =17/ for an ADE diagram and to%¥/3 =27/« for a Di Francesco—Zuber
diagram. We use modular generatsrg” normalized as followsS = s andT = r/¢. The
SL(2, Z) relations then reaST)® = 2, §2 = 1.

2.6.3. TheT operator

In the framework of modular categories, and for a Lie alg&hra general expression
for the modular twist isj = 8q(/+2°) whereq = €7/¥, p is half the sum of positive
roots, i, j are elements of the weight lattice characterizing the representatiamd t;;
moreover,((-, -)) is an invariant bilinear form og normalized by({«, «)) = 2 for a short
roote. For SU2), with i, j = 0, ..., « — 2, the modular twist isj = e17/29/U+Dg; |ts
logarithm is proportional to the Casimir operatgis related with the (would be) spinby
j+1=2¢+1,thereforgin/2)j(j+ 2) = (2ix/k)£(£ + 1). With our normalization, the
modular generatadr is therefore

_(G+D? 1
Tij:exp[2m< » —éﬂsij.

The expression[j+1)2/4«) — (1/8)] is the “modular anomaly”, and itis convenient to call
“modular exponent” the quanti = (j+1)2 mod 4 (we could as well usg( j+2) mod 4
or any other expression differing by a constant shift).
In the case of S(B), the action of the modular matrik on verticesr; = z(j,, j,) of Ak
is also diagonal and given by

(T)jj = ec[—(i1+ D? — (i1 + 1) - G2+ D) — (i2 + D? + 18-

wherei=(i1, i2), j= =(Jj1, Jj2), ec[x]=exp(—2irx/3k), andx = k + 3. We call “modular
exponent” the quantitf’ = [— (i1 + 1)2 — (it + 1) - (i2+ 1) — (i2 + 1)2 4+ x] mod 3.

2.6.4. Modular invariance
Modular invariance of the partition functiafigg can be proven either by checking that
it is invariant when we replace the modular parametey r + 1 or —1/7 in the characters
xr (these functions are generalized Jacobi's theta functions) or, much more simply, by
showing that the matri¥¥po commutes with the generatofsand T’ of the modular group
in this representation.
It can be checked, from the explicit expressionsSodnd 7' in the SU2) case, that,
78 = 1 whenk is odd and7* = 1 whenk is even. This, by itself, is not enough to
imply the following property, which is nevertheless true, and was proven more than 100
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years agq21]: the Hurwitz—\Verlinde representation of 8, Z) factorizes over the finite
group SK2, Z/8«Z) whenk is odd, and over S, Z/4xZ) whenk is even. For instance,
740 = 1 for A4 (40 =8 x 5), butT*® = 1 for A11 (48 = 4 x 12).

2.6.5. Determination of Q&) from the modular properties of the diagrath

In general, an Ocneanu cell system is defined by four graphs—two horizontal and two
vertical—satisfying a number of matching properties (46226). Particularly interesting
cell systems are obtained when one chooses the two horizontal graphs as given by two
Dynkin diagrams with the same Coxeter number. In the present situation, these two are
given by the same Dynkin diagrat (we write “Dynkin” but this graph can be a member
of an higher system). A priori, the determination ofl@¢ results from the study of the block
structure of3G for its convolution law. This, in turn, requires the determination of the values
of all Ocneanu cells for the graph system of type G), a task that may involve rather long
calculations .. but if our only purpose is to determine @), it is simpler to find a short
cut. One possibility is to use the fact that we already know, in many cases, the expression of
the modular invariant (as calculated by Cappelli ef@&lr] for SU(2) and Gannoh20] for
SU(3)); such atechnique was apparently followed by Ocneanu himself in his determination
of the irreducible quantum symmetriesalso called “irreducible connections”, associated
with a given diagram. However, if we do not want to use this a priori knowledge, there
is another technique, which uses modular properties of the diagram; this was one of the
purposes of the articlg.2].

The A series is always modular: one can define a representatirSL(2, Z) on the
vector space of every diagram of this class and the opeTai®diagonal on the vertices.
Take nowG some member of a generalized Dynkin—Coxeter system, and ealld(G) the
corresponding member of th4 series (same Coxeter number or altitude). Being a module
over the algebra of, there are induction—restriction maps betwéeandA. These maps
are described by the essential matriégor by matricesr; (seeSection 2.5.4nd[9,11)).

One can try to define an action of &1, Z) on the vector space @ in a way that should

be compatible with those maps, but this is not necessarily possible. In plain terms: suppose
that the vertexr of G appears both in the branching rules (restriction map frota G) of
verticest, andt, of A; one could think of defining the value of the modular generator

ono either asl(t,) or asT(z,), but this is ambiguous, unless these two values are equal. In
general, there is only a subskbf the vertices of5 for which T can be defined: a vertex

will belong to this subset whenevéris constant along the vertices afwhose restriction

to G containsy. The knowledge of this setallows one, in the “simple cases”, to determine
Oc(G), the algebra of quantum symmetriesaifthe set/ generates a particular subalgebra

of G and one finds O&) = G ®; G.

Results for the ADE systenir diagrams of typgl, the subalgebrd coincides with the
algebra of the diagram itself, so that @ is isomorphic withA4. For Eg, the subalgebrd,
isomorphic withAz is generated by the three extremal points, an@EFgt = Es®4, Es has
dimension 12 (notice that = 12, as well, but this is an accident). FBg, the subalgebra
J, isomorphic withA> is generated by the two extremal points of the long branches, and
Oc(Eg) = Eg ®a, Eg has dimension 32 (notice that= 30). The other cases are more

12 Actually this representation factors to a finite group.
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difficult to analyze: OCE7) = D10®, D10, Where the exceptional twigtcan be determined
from the modular properties (with respecttpof the A17 diagram; its dimension is 17. The
algebra of guantum symmetries fofgqq diagram can be written as a quotient (using an
identification mayp) of the tensor square of the associated algebra of #/ffer instance,
Oc(Ds) = A7®,(47) A7); the Ocneanu graph @by, 41 has 4 —1 vertices. In some respect,

the determination of Ocneanu graphs Mgen diagrams is more difficult; indeed, the
algebra of quantum symmetries, in this case, is not commutative. We sketch its construction
because the result will be used later in our study of the twisted partition functions for the
Potts model. Starting fror,,, one first obtains the induction—restriction rules with respect
to the corresponding diagram with the same normig,_3) by calculating the essential
matrices; from these rules and from the expression of the modular opé&rator 4, 3,

one determines the sét One finds that O@>,) consists of two separate components. The
first is given by D§U"® @ ;, DSU"C, where DSU is the vector space corresponding to the
subdiagram spanned Byo, o1, 02, .. ., 02,3}, obtained by removing the fork, antl =

{00, 02, ..., 02,_4} is the corresponding truncated suBSetf J. The second component

is a non-commutative 2 2 matrix algebra reflecting the indistinguishabilityaf, > and

05, _». Ambichiral points are associated with the- 1 vertices of/ (i.e.,n — 1 for the linear
branch and 2 for the fork); the Ocneanu grapgf has [2n—2)(2n—2)/(n—1)] +4 = 4n
vertices.

Results for the S(B) system: there is no complete treatment in the available literature,
but several examples have been worked oufl2]. Because we shall use it later (see
Section 5.2.2in our study of twisted minimal models of typ#'3, we just mention that the
Ocneanu graph of the exceptiorggldiagram has 24 points; both left and right chiral sub-
graphs have 12 points; the ambichiral subalgebra is of dimension 6 and the supplementary
subspace has also dimension 6.

2.7. Characters for affine models

Strictly speaking, we do not need to use characters in this paper since modular properties
of the partition functions are to be discussed in terms of commutation relations between
the toric matrices and th& T generators of S2, Z). However, for completeness sake,
and for the reader who wants to check explicitly the results in terms of invariance, or
non-invariance, with respect to transformatiens- —1/r andtr — t+1 (ort — 7+ N,
for TV), we remind the definitions of the characters as functions, é6r affine models.
Herer is a pointin the upper-half plane and we &€”"*. These characters provide a basis
of the vector spac€”, for the defining representation (matric®g of the graph algebra
of diagrams of typeA. In the case of the S@2) systemk = « — 2 denotes the level, and
for each vertexy = O, ..., k of a diagramA; 1 = Ay, wesetr = j+1=2¢ + 1 and
define

YO (2t 4 r)getn?/ac
n(7) '

() =

13 We choose the natural order to label vertieg®f Do,.
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A closed form, for this expression, is
Eﬁk) @ =q+ P?/42+k)
(A4 )A+0E A+ )T %) — iR+ BO'G, A+ N ¢*Hh)
n(1)3

wheren(z) is the Dedekind eta functiof[3, u, v] is the third elliptic Jacobi theta function,
andé'[3, u, v] is its first derivative with respect t@. More explicitly, these characters read

’

U a2k oo+ 1 200k + 2))q TR
:-:Ofoo(l_'_ 4t)qt(1+2t) )

£ =4

Whent — ioo, thengﬁb (@) ~ (j + 1)g~ Y&+ with h = (j + 1)2/4«. The power of; is
negative whem = j+ 1 < /k/2. Itis often convenient to use expressions that are valid in
a neighborhood of infinity, for instance:

GraphAj:

£ =1
GraphAj:

£V(g) = Y241+ 39 + 4% + T3 + 13* + 19° + 2908 + - ),

£V (g) = ¢¥? 2+ 29 + 64° + 843 + 14* + 205° +345° + - ).
GraphAs:

5(()2)(61) = 61_1/16(1 + 3¢+ 9q2 + 15q3 + 30q4 + 54q5 + 94q6 +.0),

£2(q) = Y82+ 6q + 1277 + 264° + 48" + 84¢° + 146° + - - ),

£2(q) = q7/83 + 4q + 1242 + 214 + 43¢* + 69¢° + 1235 + .- ).

SU(3) characters have similar expressions, but indjaeder then to a Young frame with
two rows. Because of the two existing conventiaiasj) or (r, s), for the label of the origin
(O or 1) itis convenient to set; = &, x2 = &1, etc.,

® e
Xjr1=§j

3. Torusstructuresfor affine models
3.1. Example of an affine model: tli case

Toric matricesW,g have been determined for all ADE cases and a few others. Since
we shall need them later, we summarize the situationFgrWe also present, in this
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o3
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Fig. 1. TheEg and A11 Dynkin diagrams.

Wo =

1 . . . . . 1

Fig. 2. TheEg Ocneanu graph and its modular invariant.

case, several results that were not available before: the full multiplication tablg 660)c

the determination of the frustrated partition functions with two twists, and a discussion

of modular properties of these functions. We also show how to display the expression of
these partition functions in a compact way, by using induction—restriction rules for the pair

(A11, E6).

3.1.1. TheEg diagram and its Ocneanu graph (summary)

Fig. 1displaysEg and the related diagrary ;. Verticeso, of Eg are labeled 0, 1, 2, 5,

4, 3 as shown in the picturd.;1 acts onEg, henceA1; also acts from the left and from the
right on the Ocneanu algeBfaof quantum symmetries which can be shown to be equal
[9,11]to Oa(Es) = Ee ® 4, Es. It has dimension 12.

The bimodule structure of @Qfg) over A11 is encoded by 1% 12 = 144 matrices
Wyy of dimension 11x 11 (as we shall see, many of them are equal). In particular, one
obtains the 12 matrice&,=W,q, one for each point of the Ocneanu graph, and the matrix
Wo=0® 4,0 associated with the origin &ig. 2displays the Ocneanu graph and the matrix

14 This tensor product is taken above the subalgeliargenerated by vertices 0, 4, 3, so th@iub = au®b when
u € As.
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73, T7
(g—o—f—o—@
*——0—0—0—0—0— 00— —0—9°
TO T1 T2 T3 T4 O T1 T2 T3 T4 T5 Te6 Tr T8 T9 TI0
T6 T5 T4 T5 TI10 R
T T T9 T: 1 4 9 16 25 36 1 16 33 4 25
78

Fig. 3. TheEg <= Aj; induction graph relative to vertex, and the values df on irreps ofAj1.

Wop. Continuous and dashed lines on this graph describe, respectively, the multiplications
by the left and right chiral generators11®0, 1 = 0®1. We use the notations= a®0,

d = 0®a andabl = ab’ = a®b. There are many identities hidden in this graph, like for
instance 31= 2’; to see them, the reader should work out for himself the multiplication
table of the graph algebra & or refer to[9] or [11].

3.1.2. Induction—restriction mechanism and(Cg

From the diagranks alone, we can determine the six essential matr€esf dimension
(11, 6), as explained before. Rows &% give the restriction (branching) rulet 1 — Eg
and columns give the induction rules. Induction rules are displayEdyir8. We also give
the values of the modular exponéhfor the vertices:;’s of A11.

We notice that the value of the modular matfixon g andzg is the same (also fors
andtz, and forz4 andrig). This allows one to assign a fixed valueto three particular
vertices ofEg. For every other point of thEg graph, the value of that would be inherited
from theA,, graph by this induction mechanism is not uniquely determined. These elements
{00, 03, 04} Span the subalgebraisomorphic with the graph algebra af; it admits an
invariant supplement in the graph algebragf Using this determination of, as explained
in Section 2.6.%or [12]), the algebra O@&s) is found to be equal t&s ® 4, Es (Fig. 4).

3.1.3. Linear and quadratic sum rules

Dimensions of the 11 blocks; are equal to(6, 10, 14, 18, 20, 20, 20, 18, 14, 10, 6).
Dimension of the 12 blockg, are equal ta6, 8, 6, 10, 14, 10, 10, 14, 10, 20, 28, 20). The
quadratic sum rule ready:; d? = 3" d? = 2512. The linear sum rule also holds; d; =
>, de =156.

T2,T4,T6, T8 T1,7T3,27T5,T7,T9 70, T4, T6, T10
*
*
1 T T1 T T3 T T1 T T1 T2 T3 T2 T1 T T3
Ty T2 273 2T4 Th T4 2T3 2T9 273 T4 Tr T4 T3 T4 T7
T T4 275 T T9 Te 275 3T4 275 Té Te 275 T6
2Tg 277 T8 T8 277 3Tg¢ 277 T8 8 T7 T8
78 T9 T10 T9 278 T9 79
T10

Fig. 4. TheEg <= A1; induction graphs relative to vertices, oz andos.
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There are also quantum sum rules (mass relations): def@e=0) _,_; qdimg, where
g dim, are the quantum dimensions of the vertiees G (for example 0Eg) = 4(3++/3),
0(A11) = 242+ /3), 0(A3) = 1+ (+/2)2 = 4); then, if G is a module over; (for some
k) and when O6G) = G ®; G, one can check thal®c(G)) defined as 6G) x o(G)/0(J)
is equal to 0.A4y), for instance 0Eg) x 0(Eg)/0(A3) = 0(A11); we do not know any general
formal proof of these quantum relations.

3.1.4. Toric matrices$¥,g and frustrated functions with one twist (results)

The toric matricesV,o calculated as explained Bection 2.5.6vere explicitly listed
in [9] and the corresponding partition functiosg also appear irf11]. We recall the
results?®

Woo Wi
1 - . . . .1 .
1 1 1
1 1 -1 1
1 1 1 1 1
1 1 1 -1 1 1
1 1 2 1 1 ,
1 1 1 -1 1 1
1 1 1 1 1
1 1 -1 1
1 1 1
1 . 1
W30 W1
1 . 1

1 1 1 1 . 1 1 1 1
1 1 1 1 2 1 1
2 2 . 2 2 ,
1 1 1 1 2 1 1
1 1 1 1 . 1 1 1 1

15 Forx = a®b, we simply callWap=W,y, o-
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Wao Ws1
T | L
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 2 1 1 ,
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1
Wio Woz
.. 1 1 .1
1
1 1
1 1 1 .1 1 1
1 1 1 1 1
1 1 1 )
1 1 1 1 1
1 1 1 1 1
1 1
1 . 1
1 1 1
Wao Wo2 = Wa1
1 1 -1 1
1 . 1
1 1 1
1 1 1 1 2 1 1
1 1 1 1 1 1 1
2 2 - ,
1 1 1 1 1 1 1
1 1 1 1 2 1 1
1 1 1
1 . 1
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Wso Wos = Wa1
1 1 1
1 . 1
1 . 1
1 1 1 .1 1 1
1 1 1 1 1
1 1 -1 1
1 1 1 1 1
1 1 1 .1 1 1
1 . 1
1 . 1

We shall come back to these toric matrices with a single twist at the end of the next section
and write the corresponding partition functions in a compact way.

3.1.5. Toric matricedVyy from induction graphs

Here we give a first algorithm allowing a simple determination of allig. For sim-
plicity, we choose to carry this discussion in the case ofAggraph. In the case of toric
matrices with a single twist, this algorithm was describefid 1], it is described here in
the case of arbitrary toric matrices (two twists). It therefore generalizes the method of the
previous section and uses the data given by essential matfiggd {1 induction rules).
Another algorithm for the determination of th#, using the multiplication table of the
algebra of quantum symmetries, will be described later.

Call Vp3z4[a] the (11, 3) rectangular matrix describing thgs < A11 induction graph
relative to the vertex, and restricted to vertices), o3, o4 0f Eg (Spanning the subalgehya
isomorphic withA3). Call V125 a] the analogougll, 3) matrix relative to the same vertex
o, but obtained by restriction to vertices, o2, o5 (Spanning a supplement df. Both
matrices (and induction graphs) can be obtained from(1ie6) essential matrixt, by
keeping only the columns labeled by 0, 3, 4 (respectively, those labeled by 1, 2, 5). The
induction graph relative to vertex, was given inFig. 3, we also give the induction graph
relative to vertices1, o2 andos in Fig. 4; graphs relative tas andoy are obtained from
those relative te; andog by Z; symmetry.

We need to use the three graph matriced gifobviously given by

1 00 01 0 0 0 1
Wo(A3) =] 0 1 0], Wi43)=1]1 0 1], Wx(A3)=]0 1 O
0 0 1 010 1 00

SinceAs is a member of thel series, graph matrices, essential matrices and toric matrices
of type W, are equal. Remember that, in the isomorphism As, indices 0, 1, 2 ofAz are
associated with indices 0, 3, 4 6. Toric matrices ofEg are of dimensior{11, 11); they
can be written as products of matrices of dimengibh 3)(3, 3)(3, 11), where the3, 3)
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matrices are the toric matrices df and where the rectangular matrices of dimensions
(11, 3) or (3, 11) give the induction/restriction rules from; to As.
The set of toric matrice®xy with twistsx = a®b andy = c®d, written Wap cq is

Vosdc]Wi(A3)Vz ]
{W.cdhreooEs) = § VizslclWi(A3) Vg ld], VosdclWi(Az) V], d]
Viog[c] Wi (A3) V], d] i=1,2,3

The above table exhibits, on purpose, a one-to-one correspondence with the drawing of the
Ocneanu graphHig. 2), with ambichiral generators on the first line, left and right chiral
generators on the second line and supplementary generators on the third line. Moreover, the
correspondence withindices ofA3 runs from top to bottom on each verticalffy. 2 For
instancex = 21 = 2®1, is the second supplementary generator, so that a m#ixq is
equal toVio5[c] W1(A3) V] dd].

Introducing the “adapted vectorsi{a]=Voz4la] - x andv[a]=V125a] - x, wherey is the
vector of character we write the partition functiongx, associated with matricegy, as

{Zx,cd)xeOc(Eg)
(x - wleDWi(Ag)(wld] - x)
=1 (X v[eDWi(A)wld]" - %), (x - wleh Wi(A3) (w[d]" - )
(x - [ Wi(A) [d]T - %) 123
For instanceZzy.ed = (x - v[c) Wa(Aa)old]" - 0, andZa1=Zz1.00 = (x - vl0) Wa(A)
@[0]" - ).

Altogether, we have six adapted vectofs] and six adapted vectous[q], all of them
have three componenté.The use of these two adapted vectefa] and v[a] associated
with induction rules for the vertex allows one to write all the results fd¥xy (or Zyy)
in a very compact way. Let us now rewrite the partition functions with one twist, already
obtained in the last section (matricB%) in terms of these adapted vectors.

Adapted vectors for the vert@x(seeFig. 3):

w1=w1[0] = x1 + x7, v1=v1[0] = x2 + x6 + xs. w2=w2[0] = x4 + xs,
v2=v2[0] = X3 + x5 + X7 + X9, wz=w3[0] = x11+ xs,
v3=v3[0] = x4 + x6 + x10-
With v = v[0] = {v1, v2, v3} andw = w[0] = {w1, w2, w3z}, the twisted partition functions
of type Z,o read
Zoo = wWo(A3)w, Z30 = wWi(Az)w, Zao = wW2(A3)w,
Z10 = wWo(A3)v, Zo1 = v(Wo(A3)w, Z20 = wWi1(A3)v,

16 We denote the 11 characters4f; by xj+r =&, withj4+1=1,..., 11, dropping the upper indéxwhich

is always equal to 10 in this case.

17 When studying theg graph and its induction pattern relativedag, J happens to be two-dimensional, so the
w[a] will have two components and thga] will have six.
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Z31 = v(W1(A3)w, Zso = wW2(A3)v, Z41 = v(Wa(A3)w,
Z11 = vWp(A3z)v, Z1 = vW1i(A3z)v, Zs1 = vWa(A3z)v.

The first entryZoo, is the usual (modular invariant) partition function. Explicitly, we rewrite
the 12 partition functionZ ap=Zap 00 (@mbichiral, left and right chiral, and supplementary)
in terms of these six linear combinations of charactemadw as follows:

Zoo(q) = lw1|? + w2l + |ws|?, Z30(q) = (w1 + wz)wz + w2 (w1 + w3),
Za0(q) = W1w3 + waw1 + (w22,

Z10(q) = v3ws + viw1 + vow,

Zo1 = Z1o, Z20(g) = (v1 + v3)w2 + V2(w1 + w3), Zo2 = Zoo,
Zso(g) = v3w1 + v1w3 + vaw2, Zos = Zs0,
Z11(@) = o1l + w2l + lual?,  Zoa(g) = (91 + U3)v + v2(v1 + v3),

Zs51(q) = D103 + vav1 + |v2|%.

The table of twisted partition functior,y for all ADE models appearing at the end of Ref.
[12] could be greatly simplified by using this compact reformulation.

3.1.6. The multiplication table for Q&¢)

As we know, the Ocneanu graph encodes the result of multiplication of basis elements
of Oc(G) by the two chiral left and right generators. Determination of the full table of
multiplication of OGG) can then be obtained in a straightforward manner. It is given in
Table 18 for the algebra OEs).

Once toric matrices with one twist are determined, the knowledge of this multiplication ta-
ble allows one to determine all toric matrices with two twists (“second algorithm”). Besides
the general property, , = W, ,, which holds in the present case since(£) is com-
mutative, this table also allows one to obtain many other identities between toric matrices;
for instance, from the fact thal®1) - (094) = (591) = (4®1) - (1®0) = (5®1) - (0K0)
we deduce the identitie®11,04 = Ws1,00 = Waz 10.

3.1.7. Toric matricedVyy and frustrated functions with two twists (results)

Since dimOc(Eg)) = 12, we have a priori, 2generalized toric structureld, , for
the graphEs. However, taking into account the symmew , = Wy, and other identities
encoded by the previous table, it happens that only 36, among the expected 144 toric
structures, are distinct. It is interesting to restrict our attention to those that are symmetric,
but we already know that six among the 12 toric matrices with one twist are symmetric (the
three ambichiral one®no,00, W30,00, Wa0,00 and the three which are neither ambichiral nor
chiral, W11,00, W21.00, W51,00). Therefore, we are left with only six new matrices that are

18 part of this multiplication table was obtained by Schieber.



Table 1
Multiplication table for the Ocneanu algebra 6§
0 1 2 3 4 5 r 1 21 31 41 51
0 0 1 2 3 4 5 1 i 21 31 41 51
1 1 0+2 1+3+5 2 5 2+4 1 r+21 11 + 37 + 51 21 51 21 +41
2 2 1+3+5 0+2+2+4 1+5 2 1+3+5 2T 11 +31+51 1 +2V+21+41 11451 21 11 + 31 + 51
3 3 2 1+5 0+4 3 2 31 21 11 451 1 +41 31 21
4 4 5 2 3 0 1 41 51 21 31 1 1T
5 5 2+4 1+3+5 2 1 0+2 51 21 4+ 41 11431 +57 21 N 1r+21
1 1 1r 21 31 41 51 0+31 1421 2+11 457 3+1 +41 4431 5421
11 11 1V +2v 114317 +51 21 51 21 +41 1+21 0+2+17+31 1+3+5+1+2Y  2+11 +51 5421 2+4+11
+51 +21 + 41 +4Y +31 +51
2Y 21 1Y 437 1V42V+421° 114517 21 11 +31 @ 241Y 14+3+5+1 0+2+2+4+11  14+5+21 2417 +517 1+43+5+1
+ 57 +41 + 51 +51 +21+21+41 +11+3V+314+51 421 +21 +21 + 41
+57
31 31 21 11 + 51 r'+41 31 21 3+1+4Y 2+1Y+51  1+5+21 +21 0+4+31Y+31 3+1+4Y 2+11+51
41 41 51 21 31 r o1 4431 5421 2+11 +51 3+1+41 0+31 1421
51 51 21I'+41 11 +31 +51 21 11 1 +21 5+21 2+4+11 1+3+5+1+21 2411451 1421 0+2+11
+31 + 51 +21 +41 +31 +51

7£9—-085 (£002) 81 S2ISAUd pue Aawoa9 Jo [eulnor /euanH " ‘Xnealanbo)d "y

S09
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Using our “first algorithm”, the last toric matriW>1 1, for instance, is
W2121 = V125[2] - W1(A3) - V12d[1].

The structure of the corresponding partition functibgn 21 = x - Wa121 - x is better
understood if we use this last expression, leading to

Z21.21 = (V[2]1 + v[2]3)v[1]2 + v[2]2(v[1]1 + v[1]3)
with

v[2]1 = x2 + 2x4+ 2x6 + 2x8 + x10, v[1]1 = x1+ x3 + x5 + 2Xx7 + X9

v[2]2 = x1+ 2x3 + 3x5 + 3x7 + 2x9 + x11,

v[1]2 = x2 + 2xa + 2x6 + 2x8 + X10. v[2]3 = x2 4+ 2x4 + 2x6 + 2x8 + X10,

v[1]3 = X3+ 2x5 + x7 + X9 + Xx11
then if we just consider its fully developed form obtained by using the explicit expression for
matrix W1 21. The same toric matrix can also be obtained, using our “second algorithm”, as

a linear combination of toric matrices with a single twist; indeed, the@@cmultiplication
table tells us that

(2®1)(2®1) = 00 + 200 + 280 + 400 + 191 + 191 + 301 + 31
+501 + 51,

therefore, once we have determined the toric matrices with a single twist, we get

W21.21 = Woo,00 + 2W20,00 + Wa0,00 + 2W11,00 + 2W31,00 + 2W51 00

3.1.8. Modular properties ofg

The modular matrix S foA11. As discussed isection 2.6. lrather than using a general
formula, we determine directly the modular matsiXrom the properties of the diagram
A11. The following table gives, for each eigenvalief the adjacency matrix afi1; (so
k = 10, « = 12), the components of the associated eigenvegiahosen in such a way
that it takes the value 1 at the vertex The table also gives the noriny. Define¢ as the
normalized eigenvector correspondingitdi.e., ¢ = W\/W). The modular matrixs is
then obtained from the tableof the 11 eigenvectorg (with our conventions§ = s):

S 70 T T2 73 T4 T5 T6 7 T8 T9 T10 W
B=v2++/3 [ [RI=p [B1 4] [5] 6] [71 18] [0 [10] [11] 24@2++3)
V3 V3 2 V3 1 0 -1 -3 -2 -3 -1 24

V2 1 V2 1 0 -1 —v2 -1 o0 1 V2 1 12

1 1 1 0 -1 -1 0 1 1 0 -1 -1 8
V2-./3 17 121 BT M1 57 [61 [71 181 (97 [10] [117 242-73)
0 1 0 -1 0 1 0 -1 0 1 0 -1 6
-V2-3 [11  -[21] B1 -M|1 [B1 -1 [71 -[B1 [91 -[10] [1] 242-3
-1 1 -1 0 1 -1 0 1 -1 0 1 -1 8

-2 1 -2 1 0 -1 V2 -1 0 1 -2 1 12

-3 1 -3 2 -3 1 0 -1 3 -2 3 -1 24

p=—V2+V3 1 -2 B M [ -6 [ B [0 -[10] [11] 242+v3
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With [n]=[n], [#']=[n]_ and

Mle =[11]. =1,  [2e=[10]+ =y2£+3  [8la=[9+ =1£+3
[4]: =[8ls = +/32++3), [Ble=[7]l+ =2++3, [6]+=2/2++3.
The modular matrix T for 1.
T = €"?*diag[7, 10, 15, 22, —17, —6, 7, 22, -9, 10, —17].
Characters ofd11. In a neighborhood oftb, the character;zﬁlo)iéfﬂ) of A1 read?®
G0 @=a"81+3+ 97 +), x50 =g 2 +69+18°+ ),

157@) = 1@+ 9+ 277 + ), 140 @) = ¢¥*H4+ 12+ 367+,
167@) =q"/ 6 + 157+ 457 + ), 16" (@) =¢%/(6+ 18 + 544 + - ),

1§ q) = " 8T + 21 + 63¢% + ),
XélO)(q) — 2248 1 24g + 7242 + - ),
XélO)(q) = ¢®/189 + 27 + 8142 + - --),
X0 (@) = ¢*/?4(10+ 30g + 7647 + - - ),

X§110)(q) — ¢11948(11 + 209 + 6042 + - - -).

Modular properties for the twisted partition functions 8. Sincex = 12 is even,
the representation of the modular group factorizes over the finite grou® By4«7) =
SL(2,7/48Z). A presentation of SI2, Z/NZ), by generators and relations, fofr > 4,
can be found if14]; all necessary relations can be checked here (in partididfae= 1).
Notice that, since 48 16 x 3 and since integers 16 and 3 are relatively prime, this finite
group is isomorphic with S(2, Z/3Z) x SL(2, Z/2*Z), of order 24x 3072.

The 11-dimensional vector space spanned by the charactdrg @arry a representa-
tion of SL(2, Z/487) which is not irreducible since the three-dimensional vector subspace
spanned by vectors; = w[0]1, w2 = w[0]2 andws = w[0]2 is invariant. Indeed, un-
ders :t > —1/t, w1 > (/2 (w1 + w2) — (I/vV2wz, wz > (1/v/2)(w3 — wy),
w3 > (1/2)(w1 + wo) + (1/v2)wp, and underT : 7 > 7+ 1, wy > et9/2%,
wy > €712, w3 > e 57/24,)5 Bilinear forms on this three-dimensional irreducible
subspace build a vector spagé® C3 ~ C°, which itself contains an irreducible subspace
of dimension 1, spanned by th#, o matrix. The above transformation properties of char-
acters allow one to check thdp o is indeed invariant, but it is much easier to check that
the toric matrixWp o commutes with botl$ and7.

Twisted partition functions are not, a priori, invariant under the modular group. By in-
spection, we found the following remarkable property: besifigsoo itself, noné® of the

19 Of course. . . the coefficients o&ﬁk) are not simplyj + 1 times bigger than those eg()!
20 Actually (084)(0®4) = 0R0 in the multiplication table of O@s), so thatWos,04 = Woo,00 and the corre-
sponding entry in the table (it commutes with) is just the usual modular invariant.
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toric matrices, , commutes withs, but they all commute with the opera®T15; more-
over, toric matrices also commute with particular powers of the opefatdihe results
are summarized in the following table: columns and rows are labeled by vertigesf
the Ocneanu graph, the corresponding entry gives the smallest powech thatw, ,
commutes withl'?; dots stand fopp = 48 (but this commutation property is trivial since
748 = 1 anyway):

Wey |00 03 0410 20 50|01 02 05|11 21 51
00 1 16 2| . 12 . L1212 0 12
03 |16 2 16|12 . 12,12 . 12| . 12 .
04 2 16 1. 12 . o120 012 0 12
10 L1212 0 12012 0 12 0 12 .
20 (|12 . 12} . 12 . o120 012 0 12
50 o120 12 0 1212 0 12| . 12
01 L1212 0 12012 0 12 0 12 .
02 |12 . 12| . 12 . L1212 0 12
05 o120 012 0 12012 0 12 . 12 .
11 12 . 12 . 12 . L1212 0 12
21 L1212 0 12012 0 12 . 12 .
51 12 . 12 . 12 . o120 012 0 12

The operatoff™™ represents the shift— © + N andST-1S represents the transformation

T — 1/7+ 1. Together, these two elements genefatgV), a congruence subgroup of level

N. The usual partition function is invariant with respect to the modigioup, but twisted
partition functions are invariant only with respect to appropriate congruence subgroups. For
instance Zo3 o3 is invariant under the subgroufy(2). Actually, we should remember that,

in this case, the whole representation factorizes through the principal congruence subgroup
1(48).

3.2. Example of an affine model of type(S)Jthe & case

The Di Francesco—-Zubé&r = &s diagram is displayed ifig. 5, it is a module over the
As diagram (the generator corresponding to the given orientation is the é&r@y.
Induction—restriction rules between these two diagrams and determination of the cor-
responding Ocneanu graph was analyzedl?]. The dimension of the space of paths
on &s is infinite, but when we restrict our attention to essential paths (one type of es-
sential path for every vertex afls), one finds 21 possibilities, i.e., 21 blocks of di-
mensions(d;, d;) for the first algebra structure d8G. The integersd; are given by
the list: (12), (24, 24), (36, 48, 36), (36, 60, 60, 36), (24, 48, 60, 48, 24), (12, 24, 36, 36,
24, 12).
For its other multiplicative structur&G has 24 blocks. Its dimensiods are as follows:
six blocks withd, = 12, 12 blocks withi, = 24 and six blocks witld, = 60.

21 We write “modular” but the relevant group is &, Z), not PSL(2, Z).
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Fig. 5. The€s and.As generalized Dynkin diagrams.

Notice that" ; d% = 29376 and)_, d = 29376; moreove}_ ,d; = 720 andy_, d, =
720. The indexing set for, i.e., the Ocneanu graph &£, has 24 points; it was obtained in
[12] and is displayed ifrig. 8.

One obtains in this way 24 toric matrices (and partition functions) of Wpe, and 24
matrices of type¥, ,. Many of them happen to coincide. The modular invariant partition
function is associated witi¥p o and is given by

Zes=Z1,91, = IX@1) T X332+ 1xws + x@z >+ Ixcy + x@al?
+1x@2 + xwel? + Ixan + xasl® + 1xes + x61l%

It agrees with the expression first obtained by Ganj2@j, using entirely different tech-
nigues. One could then determine all toric matrices with one or two twists and perform the
same kind of analysis as the one that was carried out foEghiagram.

4. From graphsto minimal models
4.1. Central charges

Affine SU(2) modeld hese are the models considered in the last section; they are associ-
ated with an ADE diagrang of level k (with Coxeter number, or altitude,= k + 2). For
an affine Lie algebrg; at levelk, the central charge is obtained from the modular phase (or
from the expression of the modul&roperator, se8ection 2.6.3or from the principal part
of characters near complex infinity, section 2.y equal to din{g) - k/(k + Coxeterqg)).
SU(2) models have therefore a central charge=3k/(k + 2), value that we magefine
as the central charge of the underlying ADE diagram. All these models are umitarg)
The limiting case: = 1 is obtained fok = 1, i.e., for the grapi.

Affine SU(2) models can be identified with WZ\8l(2), models or with coset models
obtained from conformal embeddings (i.e., same central charge) o§typg C 01, here
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01 is some affine Lie algebra at level 1. For instance, both models associated with diagrams
A11 and Eg have the same central charge< 5/2) and the second model can be obtained
from a conformal embeddinglX2)19 C spin(5)1; we can check that digSpin(5)) = 10,
Coxete(Spin(5)) = 3, and 310/(10+ 2) = 10.1/(1 + 3).

Minimal models Minimal models of typeV» (or “minimal models”, for sho®?) are
defined by a pair of diagram&, G2) belonging to the S(®) system, i.e., two ADE
diagrams. We calt; andk; their respective levels (so that Coxeter numhegrandx; are,
respectively, equal thy + 2 andk, +2). Assuming that the Coxeter numbers of the diagrams
are relatively prime, the general formula for the central charge is

(k1 — K2)?
Kiky

c(ky, k2) =1 — (ky — k2)(c(k1) — c(k2)) =1 -6

Unitary minimal models are obtained whén — «2| = 1, thenc = 1 — (6/x1x2) and
(0 <c¢ < 1).Orderingky =k—1 < kp = k,onegete(k—1,k) = 1—(6/(k+1)(k+2)),
which is the value obtained in particular for models of tyge 1, Ax) = (Ag, Ar+1). The
ordered set of values starts with, 1/2, 7/10, 4/5, 6/7, 25/28, ...}. The limiting case
¢ = 0 is obtained for the paifA1, A2). In particular,c = 21/22 for the(A1o, A11) model;
the same value afis obtained for th€ A10, Eg) model. The previous formula giving for
unitary minimal models, can be writtetk — 1, k) = ¢(1)+c(k—1) —c(k), indeed:(1) = 1.
This expression is therefore compatible with a coset de/@k,l ® s/u@l/s/u@k,
and itis a particular case of a more general formula, valid for coset moded®, /O, +«,
namelyc(ki, k2) = dim(@)[(k1/(k1 + h)) + (k2/(k2 + h)) — ((k1 + k2)/ (k1 + k2 + h))],
whereh is the dual Coxeter number gf

Affine SU(3) modelshese are the models considered in the last section and associated
with a Di Francesco—Zuber diagraé of level k (with generalized Coxeter number, or
altitude,x = k + 3). From the general formula for the modular phase, we see that all affine
SU(3) models have a central chargé)=8k/(k + 3). All these models are unitary & 2).

The limiting case- = 2 is obtained fok = 1, i.e., for the grapi;.

Affine SU(3) models can be identified with WZ\8l(3); models or with coset models
obtained from conformal embeddings (i.e., same central charge) o§typg C §1, here
01 is some affine Lie algebra at level 1. For instance, both models associated with diagrams
As and&s have the same central charge=£ 5) but the second model can be obtained
from a conformal embeddingl(3)s C SW(6)1; we can check that digsU(6)) = 35 and
CoxetefSU(6)) = 6, so that8 x 5)/(5+3) = (35x 1)/(6+ 1).

Minimal models of typ®V/s. Minimal models of typé/V; are defined by a pair of diagrams
(G1, G2) belonging to the S(B) system, i.e., two Di Francesco—Zuber diagrams. We call
k1 andky their respective levels, so that the generalized Coxeter numbersd«, are,
respectively, equal t&; + 3 andk, + 3. Again, assuming that the Coxeter numbers of the
diagrams are relatively prime, the general formula for the central charge is

(k1 — Kz)2>

c(ka, k2) = 2 — (k1 — k2)(c(k1) — c(k2)) = 2 <1 -12
K1Kk?2

22 ), denotes the Virasoro algebra.
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Unitary minimal models of typ&Vs are obtained whefc; — k2| = 1, thenc = 2(1 —
12/k1k2) and (45 < ¢ < 2). Orderingky =k — 1 < kp = k,one gets(k — 1, k) = c =

2 — (24/(k + 2)(k + 3)), and this holds in particular for models of typd;_1, Ay). The
ordered set of values starts widy5, 6/5, 10/7,11/7,5/3, ... }. In particularc = 11/7 for
the(A4, As) model; the same value ofs obtained for thé A4, £5) model. The limiting case
(whichis rather special}, = 4/5 < 1is obtained for the pait41, A2). For unitary models,

the central charge can also be writter@s—1, k) = ¢(1)+c(k—1)—c(k), indeed:(1) = 2.

This expression is therefore compatible with a coset mSTu@k_l ® S/U\(S)l/S/U@k,

and is a particular case of an already mentioned more general formula, valid for all coset
models.

Remark Minimal models of typeAVy involve, by definition, a finite number of irreps of
the algebraVy . The Virasoro algebri); is subalgebra ofVy, for N > 2 and, in particular,
of Wi. Under the restriction (“branching rulesPys — W, an irreducible representation
of W5 can be decomposed as a sum of irrepgWaf but this sum is in general infinite. For
this reasonyVs-minimal models do not give rise, in general, to usd&b§ minimal models,
although this may happens: it is the case for the smallest memdhedp) of the diagonal
Ws series (its central charge 4/5 is smaller than 1) which can be identified with the Potts
model, i.e., the non-diagonal minimal modéels, Dy).

Affine SUN) models and minimal models of typ®y. Let us just mention that for a
diagram of levek belonging to a generalized Coxeter—Dynkin system of typéA§Uthe
altitude isk = k + N, the central charge isk) = (N2 — 1)k/(k + N). A minimal model
of type Wy is defined by a pair of such diagrams and the central charge is

c(k1, k2) = (N — 1) — (k1 — k2)(c(k1) — c(k2))
(k1 — K2)2>

K1K2

=(N—1)<1—N(N+1)

More generally, if we replace SW) by a Lie group of rank and dual Coxeter numbe¥,
the last formula readd]

(k1 — Kz)z)

clki, k) =r (1 — NN +1)
K1K2

In the later case the conceptdfy algebras has to be generalized.

4.2. Characters, symmetry of Kac tables and partition functions

A generalized minimal model is defined by a pé&i¥1, G2) of diagrams which are
members of some (generalized) Coxeter—Dynkin system. Characters are now labeled by
a pair (r, s) of vertices belonging to4(G1) x A(G2), where A(G1) and A(G2) refer
to the diagrams of thed series which have, respectively, same Coxeter number (or al-
titude) as the given two diagrams. As it will be recalled below, in the case of minimal
models of typeWy, what matters is a quotient of this product of diagrams byZke

group.
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Minimal models Vertices are labeled by integeror s and we have &, actior?® on
(Ak+1, Akp11): (1 8) > (0(N)=k1+2—r, 0(s)=kx +2—s). We take 1< r < k1 + 1 and
1<s<k+1.

Minimal models of typ&Vs. Vertices are labeled by SB) Young diagrams or by the
(integer) componentér1, r2) of the chosen vertex with respect to the two fundamental
weights of SU3), and we have &3 actiorf* on (A Aky), With (r = (r1,72), s =
(s1,52)) = o(N=((k1 + 3 — (r1 + r2), r1), o(s)=(k2 + 3 — (s1 + s2), s1). Here we take
l1<r,rp<ki+1landl1<sqy,s2 <ko+ 1.

The different types of frustrated partition functioRartition functions for minimal mod-
els (twisted or not) can be thought as sesquilinear fafras¢ - W - ¢ and the matrix¥ is
obtained as a tensor product of matridés= W(G1) ® W(G2), whereW(G1) andW(G>)
are, respectively, toric matrices for the affine models associated with diagiaarsdG .
Calling k1 and k> the levels of these two diagrams, we obtain in this way—for minimal
models of type Virasoro—a square matrix of dimensiéin + 1) x (ko +1))2; for minimal
models of type/s, it is a square matrix of dimensidiky + 1) (k1 +2) (ko + 1) (ko +2) /4)2.
Naively, the elements of a vector space basis on whichiwhisatrix acts could be labeled
xr ® xs in the first case, and the same thing in the second, but with (r1, 72) and
s = (s1, s2). However, at this point one has to take into accountZhection (or theZs
action, in the case df\3) that identifies basis vectors labeled (ays) and by(o(r), o(s)).

A priori, for each pair(x1, y1) of vertices of the Ocneanu graph @&) of the diagram

G1, we have a toric matri¥,, ,,(G1). Same thing for the diagra@,. The most general
twisted (or frustrated) partition function, for a minimal model defined by the(gair G»)

is obtained as th& (k) quotient of the sesquilinear form associated with the tensor product
of toric matricesWy, y,(G1) ® Wy, ,(G2).

Because of th&y identification (v = 2 for Virasoro andV = 3 for W3), the formula
for partition functions reads as

_ 1 = / "
Z= NX(WM @ W_ )x.

LA

Since any of the indices; or y; can be equal to ,Owe obtain the six types of twisted
partition functions announced Bection 1 they are, respectively, obtained (up to a trivial
permutation of the diagramSi, G2) by choosing((x, y), (z, 1)) to be of one of the fol-
lowing: ((0, 0), (0, 0), ((x, 0), (0, 0)), ((x, ¥), (0, 0)), ((x, 0), (z, 0)), ((x, ¥), (z, ). These

six cases exhaust all possibilities for a conformal theory specified by a pair of Dynkin di-
agrams; of course the last case is the most general since it encompasses all the others and
the usual partition function is recovered when all four indices are equallto@inciple,

we should denote the most general twisted partition functions of minimal models by the
symbol W, y1):(x0.y,) @nd remember that; themselves are in general given by products

of the typea®b. To ease the reading we often drop these indiceswhen they are equal

to 0 = 0®0 and hope that this will be clear from the context. We shall examine several
examples in a later section. In the so-called “diagonal cases”, one takes two diagrams of

23 7, acts separately on the two diagrams but we take the diagonal action.
24 7.3 acts separately (counter-clockwise) on the two diagrams but we take the diagonal action.
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type A; the different types of matrices (and indices) introduced before coincide: = x,
G, = N; = W, and the undeformed toric matri¥g is just the unit matrix.

Torus structures versus twisted boundary conditidiee above partition functions, also
called “frustrated partition functions” are not, in general, modular invariant—but they are
not arbitrary either! Another definition of the same objects together with the following
interpretation was given if37] and we repeat it here. A usual partition function on a
torus function can be written @ = Zi’j Zij xi(@) X j(g) with g = exp(2izt), where the
calculation is made by identifying the states at the end of the cylinder through the trace
operation. Then let us imagine that we incorporate the action of an op&fatitached to
the non-trivial cycle of the cylinder before identifying the two ends. The opepatalled
twisting operatoishould commute with the Virasoro operatérsand it is invariant under a
distortion of the line to which it is attached.is therefore attached to the homotopy class of
the contoulC and can be thought in general as a linear combination of operators intertwining
the different copies o¥; ® f}j (Verma modules corresponding to the holomorphic and
antiholomorphic sectors of the theory). In other words, the effedt f basically to twist
the boundary conditions. The partition function reads as

Zx =try XT=e"2" with [L,, X] =[L,. X] =0.

An explicit expression, in the presence of two twiktandY, was written forZy in [37],

in terms of the matrix elements of the modular operatdut we do not use this formula

in our approach since we prefer to use directly the induction—restriction rules associated
with the diagrams (we do not use the Verlinde formula either since the expressionsof the
operator itself—and not the converse—comes from the graph algebra.4f, ttiagrams).

4.3. Conformal weights and generalized Rocha—Cariddi formulae

If our goal is only to give expressions for the (twisted) partition functions, we do not need
to use any explicit expressions for the characggrsof minimal models but an expression
of conformal weights is needed when one wants to discuss the physical contents of a given
theory. Let us recall briefly these standard results.

Characters for minimal model€allx1 = k142 andco = ko + 2 the Coxeter numbers of
the two diagram&;1, G2, the conformal weights are given by the Rocha—Cariddi formula

(ricz — sk1)? — (k2 — K1)?
hr,s =

with 1<r<k;1—1and 1<s <«p— 1L
4icq1k9

This expression is invariant under thg diagonal action defined previously. In the unitary
casesikz —k1| = 1 andthe above expression can be simplified. For unitary minimal models
and near complex infinity, the Virasoro characters read

$re = g VD21 4,

where the expression of the central charfmr a pair of ADE diagrams was recalled before;
notice that one can recover the conformal weightsfrom these asymptotic expressions
(without using the expression of the Kac determinant).
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The general expression of charactgrs, for minimal models, is

_ Z q(2uK1K2+rK1+SK2)2—(K1—K2)2/4K1K2

ql/24—C(K1,K2)/24 +0oo
n(q)

u=—00

400
+ ) q<2“K1Kz+rK1SK2)2(”1K2)2/4K1K2>.

u=—00

Both ¢,.; andh,.; are invariant under th&, action (a symmetry of the Kac table).

Relation between affine and Virasoro charact€rall x; andy2 the two (affine) characters
associated with the grapty. Call x,(G1) andy;(G2) the affine characters of the graph
andGz and¢, ;(G1, G») the Virasoro characters. In the unitary case, i.e., for consecutive
graphsG; (k2 = k1 + 1), we have the useful relations

X(GOx1= Y ¢5(G1, GDx:s(G2),  x-(GDxa= Y ¢.5(G1, G2)xs(G2).

s,0dd s,even

Characters for'W3 minimal modelsiIn that case one has to consider two conformal
weights: the first one, calletd = 2@ is usually defined as the eigenvalue of the Virasoro
generatotlq for the highest weight vector of the representation, and the other, dafled
is defined as the corresponding eigenvalue for tiie §enerator'(4,5]. These values can
also be obtained from the principal parts, near complex infinity, obthecharacters. We
just give the formula fok; herer ands are vectors with two indices:

o leor — k1) - (K) - (or — kas) = 20c2 = K1)?

’

2K1K2

where

1(2 1
KZ(K)M,U:§<1 2)

is the inverse Cartan matrix of(8). Both characters and conformal weights are invariant
under theZs action ¢z symmetry of the/Vz Kac table).

4.4. Modular operators for minimal models

We just remind the reader that the general formula giving the modular opé&tator
minimal models, can, for example be obtained from the prefactor giving the asymptotic
form of Virasoro characters near complex infinity and that jL&]

T(r,s);(t,u) = Sr,t(ss,u eZIn(hrs—c/24),

2 . K . K
Sm,n);(rs) = 2 /E(—l)“r””rmssm [nK—imr] sin [nk—;sn} )
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5. Torusstructuresfor unitary minimal models
5.1. Examples from the ADE series

The most general twisted partition functions are of the type
Wiy 31 (GD®Wos 3, (G2),

where the® symbol means that we first calculate the tensor product of the toric matrices,
and then identify pairwise basis elememis according to théZ; symmetry of the Kac
table. As we knowW,, ,, (G1) can be gotten from the knowledge of the toric matrices with
only one twistW,, o(G1) and from the multiplication table of @G'1) which, for members

of the A series, coincide with the graph matrices (fusion matrices) themselves, their deter-
mination is then relatively easy, s&ection 2.5We have an analogous comment for the
graphGa. For minimal models, it is therefore enough to study twisted partition functions of
the typeZx,.0):(x,,0) = (1/2)le,o(Gl)®WxZ,o(Gz), that we shall call “fundamental toric
structures”, for short. Now, if we considenitary cases and further restrict our attention to

the so-called “diagonal cases”, i.e., when both graphs are ofdypmitarity requirement

tells us thatG1 = A, andG2 = A, 1. In such cases, we would expegt: + 1) funda-
mental toric structures, b, symmetry brings this number down ta@n + 1)/2. More
general unitary models are obtained when the corresponding Coxeter numbers are consec-
utive integers; for pairs of diagrams involving members fromZEher E series, a general
determination of all fundamental toric structures has to take fully into account the struc-
ture of the corresponding Ocneanu graphs. For illustration, we shall examine three unitary
cases in this section: the Ising model—it is associated ¢4th A3), the Potts model—it

is associated witliA4, D4), and the(A1g, Eg) model.

5.1.1. Ising model
The first non-trivial case of the minimal models series corresponds to the Ising model with
central charge = 1/2. This model is associated with a pair of Dynkin diagrams, As)
with Coxeter numberscs, = 3, k4, = 4). The modular invariant partition function can
be build from the tensor product of the corresponding fundamental toric maw@é&@

W(()A3) which, respectively, describe the undeformed torus structures of the two diagrams. In
what follows we present the partition functions associated with tae2% 3/2 fundamental

toric structures, as discussed above, they are ofthemﬁ‘?‘ﬁ)®W(A3) W(f2)® W)EA%) Fol-

lowing Petkova and Zub¢B6], they can be interpreted as a result of the msertlon of twisted
boundary conditions (defect lines). The toric matrices of the Wpefthe pair(A;, A3) are

1 00
10 0 1
Wo(A2) = (0 1) ) Wi(A2) = (1 0) , Wo(A3)=]0 1 0],
0 0 1
010 0 0 1
Wi(A3)=| 1 0 1], Wo(A3) =0 1 O
010 1 00
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The fundamental twisted partition functions are given by
Zyy = 30(Wx(A2)®W,(A3))8,

whereg = (911, 921, P12, P22, P13, P23) are the characters identifying highest weight rep-
resentations with conformal dimensions given in the following table:

hi11=h3=0
1
16
1
hiz=hx =35

h12=ha =

Here and below, the Virasoro characterare labeled with indices s starting from 1
(because this is standard), but indi¢eslabeling partition functions or toric matrices in the
A cases, start from 0 (because this is our convention for labeling verticgsdibigrams).
Such a choice is admittedly confusing but we hope that the reader, being warned, will not be
mistaken. The characters will also be sometimes labeled by the corresponding conformal
weights:¢n(.s) = ¢r.s.

The six possible cases are listed and explicitly build as follows:

1

1- 1-
Zoo = 5¢(Wo(A2) ® Wo(A3))$ = 5¢ 1 ¢

1

1
= §[<|¢1,1|2 + 12315 + (91212 + 12217 + (¢1.31% + [h2.117)]

= |p1.11° + 1p121% + P1,31° = |dol® + 1,21 + |b1/16/%

Actually, we should have writte® rather thar® in the above first line, but lines 2 and 3 also
involve an (hidden}; identification, which is explicitly performed on line é41 = ¢2 3,

etc.). From now on we shall not mention it explicitly but it should always be understood
that anZ, identification of characters, corresponding to the symmetry of the Kac table
(conformal weights), should be performed at the end of calculations:

1. 1-(1 1
Zo1 = §¢(W0(A2) ® W1(A3))¢p = §¢

= ¢1/16(d1/2 + P0) + d1/16(1/2 + B0),
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1
1
1— 1_ 1
Zoo = §¢(W0(A2) ® W2(A3))¢ = §¢ i (]
1
1
= god12 + d1/200 + |¢>1/16|2,
1
1
1- 1- 1
Zyo = §¢(W1(A2) ® Wo(A3z))¢p = §¢ : ¢
1
1
= God1/2 + P1/200 + |p1/161° = Zo2,
1
1
Z11 = SB(Wi(A2) ® Wi(Az))d = —a ! !
11—§¢( 1(A2) ® Wi( 3))¢—§¢ i 1 ¢
1
1
= ¢1/16(d1/2 + ¢0) + P1/16(dh1/2 + P0) = Zo,
1
1
1- 1- I
Z1p = §¢(W1(A2) ® W2(A3))¢p = §¢ L (o

= |¢pol? + |¢1/2|2 + |<l>1/16|2 = Zoo.

We therefore obtain only three distinct partition functions, as expected: equdlities:
Z_;3-; are consequences of thg, = ¢3_,.4_ identifications (remember that; in-

dices are shifted by one unit, compared withindices). In the graph algebrs, we have

af = o0g + o2, and since OA3) = Agz, a corresponding toric structure, with two twists,
described by the matri¥/1.1(A3) = Wp(A3z) + W2(A3); in the Ising model, we can there-
fore also consider the (non-fundamental) partition function associated with the toric matrix
Wo(A2) ® W1.1(A3), i.e., Zoo + Zoz2 = |do + ¢1/2|% + 2¢1/16/° [35]. We summarize the
results for the fundamental partition functions in the following table:

Zoo = Z12 = Igpol? + 161/21% + |d1/16/
Zo1 = Z11 = $1/16(91/2 + ¢0) + $1/16(P1/2 + P0)
Zo2 = Z10 = ¢op1/2 + d1/2¢0 + |¢1/16|2
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The representations of the modular group appearing in these theories are usually not faith-
ful: it can be checked that?* = 1 for the affineA, case,I''® = 1 for the affineAs case
and7*8 = 1 for the minimal mode{A», A3). Zgo, determined above, is the usual modular
invariant partition function of the Ising model, and the associated toric matrix commutes in
particular withT. Toric matrices associated wi##p, and Zp1, respectively, commute with
72 andT16. The twisted partition functio&o; is invariant under the congruence subgroup
I'v(2), which involves an additionaf, symmetry (in generallp(k) is not an invariant
subgroup of the modular group but it contains, as well as all its conjugates, the principal
congruence subgrouf(k), which is invariant inI”, moreover,lg(k)/ (k) ~ Zj). In the
language of twisted boundary conditions, one assumes that the fields corresponding to given
characters are invariant only up to a phase under translations of the lattice, i.e., one assumes
that they transform according to one-dimensional representations of the cyclicZyrdap
the case 0F, 2, these are periodic boundary conditions imposed on the spin in one direction,
and antiperiodic onesinthe otj86]. The interpretation af o1, for which the partition func-
tionis invariant under the congruence subgréb(l 6) would be interesting to study further.

5.1.2. Potts model
As a second example we consider the (non-diagonal) Potts model with centralckarge
4/5. This example differs from the previous one since the pair of Dynkin diagrams involved
are not both of thet,, type but(A4, D4) with dual Coxeter number& s, = 5, kp, = 6).
Following the same steps as before we present the fundamental partition functions.
The A diagram corresponding tb, is As (same Coxeter number) so that the twisted
partition functions in this case take the form

Zyy = 30(Wi(Az) ® Wy(Da))o,

¢ = (P11, P21, $31, Pa1, P12, P22, P32, P42, P13, P23, P33, P43,
D14, P24, P34, P44, P15, P25, P35, P4s5).

The table of conformal weights for thid 4, As) system is given by the following table which
contains 4x 5 = 20 entries but only 18= 20/2 distinct weights. Only those weights

such thak belongs to the set of exponents/af are conformal weights for the (undeformed)

(Aa, D4) model. Exponents ab4 are 1, 3, 5 and 3, as it is well known (or calculate the
adjacency matrix of the diagram and (&ection 2.3. The conformal weights obeying this
criteria are typed in bold in the following table; there are only six of them. In the Virasoro
minimal models language, these states (called “Potts model states”) correspond only to a
subset of conformal primary fields and are closed under fusion rules. Introduction of twists
in general involves states of tlid 4, As) system which are different from the usual Potts
states; the usual identification, stemming from #hesymmetry, of course still holds:

hip=hsys=0
h12 = has = %
hiz =hsz = %

13

hia=ha2 = 3
his=hg; =3
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Fig. 6. TheD4 Ocneanu graph and the modular invariant matrix.

ha1 = hzs = 2
hpo = has = 7
hps=hsz = &
hoa = h3p = 55
hps = ha1 = £

In order to build the fundamental toric matrices for this model, we need to use those cor-
responding to the Ocneanu graphs associated with diagiaraad D,4. The first is easy:
Oc(Ag) = A4. The corresponding toric matrices are

1 0 0O 01 0O
woan=19 5 3 5. wmua=|g5 3 5 .
0 0 0 1 0 010
and
0 01 O 0 0 0 1
waan=[9 5 95 wian=9 %% 9
01 0O 1 0 0O

The graph O¢D4), given in[28] has eight points; it looks like two “mixed” copies of
the diagramD, (seeFig. 6). A study of the corresponding algebra—which is non-commu-
tative?>—was performed in one of the sections of Coquereaux and ScHitPerfThese
points are labeled,d, 2, 2’ ande, 1¢, 2¢, 2'e.

There are eight generators but it turns out (see [Al8}) that there are only five distinct
toric matrices with one twisW, with x € {0, 2, ¢, 1, 1¢} (indeed, W, = Wa, = Wy,
and W, = Wy). We call1=1¢. The non-commutativity of Q@) does not show up in

25 Classical symmetries of tHe, diagram are described by the non-commutative group algebra of the permutation
groupSs, this non-commutativity also shows up at the quantum level in the structure(@i4)c



622 R. Coquereaux, M. Huerta/ Journal of Geometry and Physics 48 (2003) 580-634

the fundamental twisted partition functions, indeed, althougk22 in this algebrd11]
(actuallye2 = 2'¢), the toric matrices associated with these two points are the same:

1 0 0 01 0 0100

0 00 0O 0 00 0O
Wo(Dg)=]10 0 2 0 O], Wo(Dg)=11 0 1 0 1],

0O 00 0O 0 0 0 0O

1 0 0 0 1 00100

0O 00 0O 0O 0 00O

01 010 1 0 2 01
We(Dg) =10 0 0 0 O}, Wi(Dg) =] 0 0 0 0 O],

01 010 1 0 2 0 1

0O 00 OO 0 00 0O

01 0 10

0 00 OO
Wi(Dg) = 0 2 0 20

0O 00 OO

01 010

We expectZ, to act as usual omy4 but trivially on Od Dy); identification is a priori
Z(x1,0):(x2,0) = Z(3—x1.0):(x2,0)s .€., Zo.x = Z3,, andZy,, = Zp,,; this can be checked
explicitly. So the number 4 8 = 32 of partition functions of this type reduces tok45
because of the accidental degeneracy between the toric matrides (ohly five cases)

and actually to 2« 5 = 10 because of th&, identifications. In the following we list
these partition functions: we have 20 fundamental toric matrices, but 10 distinct partition
functions (and only four among them involving the usual Potts’ model states):

1-
Zoo = §¢(W0(A4) ® Wo(Da))¢

4 2
1
=5 [Z(zmsﬁ + 11 + ¢r,5|2>] = @¢r3l* + I¢ra1 + br5l).

r=1 r=1



R. Coquereaux, M. Huerta/ Journal of Geometry and Physics 48 (2003) 580-634

1-
Zo2 = §¢(W0(A4) ® Wa(D4))g

NI =

|

1

1

4
> lIgral? + ($ra3(@r1 + ¢r5) + o)

2
= Z[|¢V,3|2 + ((}r,3(¢r,1 + ¢r,5) + hC)]

r=1

From now on, we no longer display the tensor product of matrices:

4
[Z |6r.2 + ¢r,4|2}
r=1

1-
Zoe = §¢(W0(A4) ® We(Da))p =

1_
Zoy = §¢(W0(A4) ® Wi(Da))p =

4
> ($r2+ $ra)(@r1 + brs + 2013)

r=1

2
= Z[((_br2 + ér,ll) (¢r,l + ¢r,5 + 2¢r,3)] ,

r=1

1-
Zoi = §¢(W0(A4) ® Wi(Da))gp =

2
= [(@r2+ ¢ra)(r1 + 5 + 26,:3)] = Zo.

r=1

Z10 = 3$(W1(A4) ® Wo(Da))$
= 2l¢231° + |p2.1 + ¢2.51° + [(P2,1 + b25) (P11 + d15) + 2023013 + hd,

4
Z(¢r,2 + ¢r,4)(($r,l + (z)r,5 + 2‘}r,3)

r=1

623

2
= l¢r2+ pral’.
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1-
Z1p = §¢(W1(A4) ® Wa(D4))g

2
= |:¢1,3(<f>2,1 +do5+¢23) + Y d23(Pr1+ rs) + hci| + |g2,3%

r=1

Z1c = 3p(W1(As) ® We(Da))op

= 2.2 + ¢2.41% + [($2.2 + ¢2.4) (P12 + ¢1.4) + hd],

1-
Z11 = §¢>(W1(A4) ® W1(Da))¢

2
=Y [(@r2+ $ra) P21+ P25+ 2623)] + (2.2 + 2.4) (P11 + P15+ 2613),

r=1

Zyi = 3¢(W1(Aa) ® Wi(Da))¢p = Z13,

Z20 = 3¢(Wa(Ag) ® Wo(Da))¢ = Z10,
Zoe = %@(WZ(AO ® We(Da)p = Z1e,
Zy = 3¢(Wa(Ag) ® Wi(Da))¢ = Z43,
Z32 = 30(W3(As) ® Wa(Da))$p = Zoo,
Z31 = 3¢(W3(As) ® Wi(Da))¢ = Zox,

Zy2 = 3¢(Wa(Ag) ® Wa(Da))¢p = Z12,
Zo1 = 3p(Wa(As) ® Wi(Da))$ = Z11,
Z30 = 3¢(W3(As) ® Wo(Da))¢ = Zoo.
Z3e = 3¢(W3(As) ® We(Da))p = Zoe,
Zy1 = 2(W3(Ag) ® Wi(Da))p = Zo3.

The results are summarized in the following table:

Zoo=Z30= Y21 (216:3 + |61+ 651
Zoa =232 = Y1[16:31 + ($r3(¢1 + b1.5) + ho)]
Zoe = Zae = Yoy |br2 + ral?
Zor= Za1 = 324 [(r2 + $ra) (r1 + b5 + 2619)]
Zy=Zy =Zo1= 73
Z10=Z20 = 2|¢231> + |p2.1 + 2,512 + [($2.1 + d25) (1.1 + d1.5) + 262.3¢1.3 + hd]
Zip="2pn= [451,3(&)2,1 + 25+ $23) + Y21 $23(r1+ drs) + hc] + 2,317

Z1e = Zoe = 1§22 + $2.41% + [(¢2.2 + ¢2.4) (d1,2 + d1,4) + h(]

Z11= Zo1= Y 2 1[(@r2 + $ra) (2.1 + 2.5 + 202.3)]+ (P2, 24 $2.2) (P11 + 1.5+2¢1.3)
2y =12y = Zu=7n

Only the partition functions written in bold letters involve the subset of states corresponding
to the undeformed three states Potts model; we rewrite them by using conformal weights
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as field subscripts. We st = Zoo, Z1 = Zo2, Z2 = Z10, Z3 = Z12:

Zo = 2(|¢2/312 + |p1/151%) + |0 + ¢3l? + |25 + d7/5/?
Z1 = |d2/31% + 11512 + (P2/3(¢0 + ¢3) + P1/15(¢p2/5 + $7/5) + ho)
Z = 2|¢1/151% + |d2/5 + ¢7/512 + [(B2/5 + b7/5) (o + ¢3) + 2h1/15¢2/3 + hd]

Z3= [¢>2/3(<f>§/3 + ¢7/5 + ¢1/15) + P1/15(do + $3) + P1/15(d2/3 + ¢7/5) + hd]
+|¢1/15]

When no twisted boundary conditions are imposed, we recover the usual modular invariant
partition functionZ.

5.1.3. TheA10—Eg example

Finally we consider the modelqo—Es) with dual Coxeter number&a,, = 11, kg =
12) and central charge = 21/22. First notice thatd(Eg) = Aj11 so that conformal
weightsh, s of this model (which is unitary since 1+ 10+ 1) is a subset of the set of
conformal weights fo(A1g, A11). Indexr stands ford1g ands for A11. A priori there are
10 x 11 = 110 possibilities, but because of tie symmetry of the Kac tablexf; =
h11-r12-5; 1 < r < 10,1 < 5 < 11), there are only half of them, so 55. The following
table lists the conformal dimensions associated to the primary fields of this model. Only
those columnég, ; such that belongs to the set of exponentsiyd are conformal weights
for the usual (undeformed)A10, Eg) model. The exponents of diagrahy are 1, 4, 5,
7, 8 and 11 (cfSection 2.3 Columns 1, 4, 5, 7, 8 and 11 of the following table are in
boldface.

r hrs
s=1 s=2 §s=3 s=4 s=5 s§=6 s=7 s=8 s=9 s=10 s=11
1 0 3 5 31 7 265 8 175 43 291 45
16 6 16 2 48 16 3 16 2
2 I 1 S 133 20 1763 117 1365 703 2465 196
22 176 33 176 11 528 22 176 66 176 11
3 1 65 1 21 15 899 35 901 248 1825 301
11 176 66 176 22 528 11 176 66 176 22
4 225 14 D 1 323 35 533 325 1281 111
22 176 33 176 11 528 22 176 66 176 11
5 20 481 91 85 1 35 6 261 95 833 155
11 176 66 176 22 528 11 176 33 176 22

In order to build the fundamental toric matrices for this model we need to use the toric
matrices (with one twist) associated with diagrafyg and Eg. The more general toric
matrices of the model can be got from the multiplication table afA3¢), which coincides

with A1g itself (so it is easy) and the multiplication table of @g) was explicitly studied

in the previous section. We have 12 toric matri#s$Eg) which are of size 1k 11 and 10

toric matricesW; (A1) which are of size 16« 10. Partition functions are then associated
with matricesZ x, 0): (x,.00 = (1/2) Wy, 0(A10) ® Wy, 0(Es) (Of size 110x 110). A priori,

we have 10x 12 = 120 of them, but because &, identifications only half of them,
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so 60, will be distinct. It is therefore enough to consider partition functions of the type
Z(x1.0):(x,0) Tor x1 = 0,1, 2,3,4 € Ajp andxy, a point of O¢Es), Sox2 is a member
of the list: {(0®0, 0®3, 0®4), (180, 280, 50), (081, 082, 0K5), (11, 2”1, 5x1)}.
Since the 12 pointsz of Oc(Eg) belong to four distinct subsets of three points each
(ambichiral, left chiral, right chiral, or complementary), it is natural to decompose our
60 candidates into four subsets of 15 each, labeled in the same way. The corresponding
table of results is quite long.. so we shall only give the 15 twisted partition functions
that belong to the first family: they are of the ty@e,, o). (x,,0) forx1 = 0,1,2,3,4 and
x2 = {0®0, 03, 0®4}. These partition functions are the ones that involve only the com-
bination of characters¢l, 7), (4, 8), (5, 11), i.e., the adapted vectaw of Section 3.1.5
The symmetry relations for this family will read agi,, o).0£0.0) = Z9-x1,0):(04.0)
andZ,, 0):(0£3.0) = Z(9-x,.0):(083.0)- Similar expressions are obtained for the other three
families. Here are the explicit results.

Calling ¢ the characters vector of 110 components (only 55 distinct conformal weight),
the 15 twisted partition functions involving the characters of type+ ¢i7, ¢ia + ¢is,
¢is + ¢i11 take the following general form:

Zij = 3¢(W;(A10) ® W;(E6))¢

withi =0, ..., 9thelabels ofthe vertices of tiig g diagram ang = 0, 1, 2 corresponding,
respectively, td0®0, 0®3, 04} vertices of O¢Eg):

Zoo=Zo2 =Y > 1 |br1+ $r71%2 + |¢ra + b8l + 1dr5 + ¢r11l?

Zio=Zg2 = [Z_f:l@r,_l + D) (@ra11+ Gri1.7) + Bra+ 6r8) (Dri1.4 + Bri18)
+(@r5 + ¢dr11) + (Dri15+ dry1,11) + (P55 + ¢511) (P51 + ¢5.7) + hdl
+|¢p5,4 + ¢s5,812

Zo0=Z12 =Y o 5 |br1+ 072+ |brat b8P+ rs+ b1+ Y0y D1+ )
X (¢r+2,1 + ¢r+2,7) + (¢Q4 + ¢r,_8) (¢r+2,4 + ¢r+2,8) +_(¢r,5 't ¢r,ll)
X (¢r42,5+ ¢r42,11) + (51 + ¢57) (P41 + ¢a7) + (54 + ¢58)
X (Pa4a+ Pag) + (¢55 + ¢511) (Pa5 + ¢a,11) + he

Z30=Ze2 = Zf§o(¢4, 1+ ¢47)(P20+1,1+ P2r41,7) + (94,4 + ¢4.8) (P2r+1,4 + P2r+1,8)
+ (945 + 94,11 (P2r+1,5 + P2r+1,11)
+ Zle(fﬁz_, 1+02.7)(P2r41,1+¢2-41,7) + (92,4 + $2,8) (P2r4+1,4+ P2r+1,8)
+ (92,5 + ¢2,11) (92,415 + P2r+1,11) + (¢51 + ¢57) (P35 + ¢3,11)
+ (¢5,4 + ¢58) (934 + P3.8) + (P55 + P511) (P31 + P3.7)
+ Y041+ D) (brs + Gr11) +NC+ Y0y 1ra + il

Zao=Zsp =Y o gltn1 + 71> + Ira + 8l + 15 + 11/
+ 2 213(951 + ¢57) (@1 + ¢1.7) + (P54 + P5.8) (14 + Pr8)
+ (¢55 + ¢511)(Pr5 + ¢r11) + (P41 + P4.7) (P21 + ¢2,7)
+ (a4 + Pa8) (P24 + P2,8) + (P45 + Pa.11) (P25 + $2,11)
+ Zfzz(qﬁg,l + ¢57)(Pr5 + ¢r11) + (P54 + ¢58) (P14 + ¢r8)
+ (¢55 + ¢5.11) ($r1 + ¢,7) + he
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Zso=Zaz=Y r_3ltra+ dr8l’ + (Pr1+ ¢.7)($r5 + ¢r.11) + ho)
+ Y24 @51+ ¢57)(dr1 + br7) + ($5.4 + ¢5.8) (Bra + ¢r8)
+ (@55 + ¢5.11) (P15 + Br11) + Y1 3(@5.1 + ¢57)(dr5 + Pr11)
+ (¢5,4 + ¢58)(Pra + ¢r8) + (¢55 + ¢511) (Pr1 + Pr7)
+ (a5 + @410 (92,1 + ¢$2,7) + (¢35 + $3,11))
+ (a1 + ¢47) (925 + ¢2,11) + (¢31+ ¢#3,7))
X D p—1.3(Paa+ ¢a8)(pra+ dre) +he

Zeo=Z32= Y o4 1r1+ 0712 + |dra + br8l? + 1615 + $r11? + (@51 + P5.7)
x (¢3, 1+f/>37)+(¢54+¢58)(¢34+¢38)+(¢55+¢5 11 (¢3,5+ ¢3,11)
+> o, 135(¢41+¢47)(¢r5+¢r11)+(¢44+¢48)(¢r4+¢r8)
+ (¢pa5 + Pa11)($r1 + ¢1,7) + e

Z70=Zo2 =Y o lra+ br8l? + (@1 + 617) (b5 + Dr10)
+ Zf’ 1(@r1+ &1 7)(Pr125 + Pri2,10) + (Pra + ¢r.8) (Pri2,4 + Hr12,8)
+ (¢r5 + 10 (Pr421 + Pr427) + (¢s, 1+ $5,7)(Pa1 + Pa7)
+ (¢p5.4 + ¢5.8)(Pa.4a + Pas) + (P55 + 511 (Pa5 + Pa11) + he

Zgo=Z12= Y 11 @1+ G ) (bri15 + bri110) + Bra + & 8)(¢r+1 4+ $ri18)
+ (¢r5 + ¢r11)(¢r+1 1+ ¢r41.7) + e+ [p51 + ¢5.71% + |¢5.4 + ¢5.8/°
+ |55+ ¢5.11/2

Zoo=Zo2 = Z;r’zl ¢4 + dr8l? + (($r1 + ¢r7) (P15 + br11) + hO)

Zor=Zo1= Z?:l@rA + ¢1.8)(hr5 + P11+ Pr1 + Pr7) + e
Z11=Zg1= Zf;l(‘?’r,{“‘ $r.8)(bri15+ Gri111+ Gyt + ¢ri17) + (r o r+ 1)
+hc+ (¢54 + ¢58)(¢55 + ¢511 + P51 + ¢57) + he
Zn=72Zn= Z?:Z(‘Z)r,él_"f' @r,82(¢r,5 +¢r11+ P+ 7))+ he
+ 32 [(Prat dro) (br2.5 + Pr211 + Pre21 + Gri2.7)
+(r < r+2)+hc+ (¢34 + ¢38) (a5 + Pa11+ Pa1 + Pa7)
+ (B 4 +he
Zs1=Zer= Y, 4(ra+ $r.8)(¢r5 + Br11+ br1+ ¢r7) + he
+ 2242 s—1.2(@ra+ dre)(P2s115 + P25+ 1,11 + P25+1.1 + P2s1.7)
+ (r < 25+ 1) + hc+ (¢34 + ¢38)(¢55 + P51 + P51 + ¢5.7)
+ (@3 < 5)+hc+ (¢pra+¢18) (Pas+Par1+da1+¢ar)+ (1< 4)+hc
Zy=Zs1= Z,=3(¢r,4_+ $:8) (b5 + P11+ br1 + ¢r7) + he
+ 31 (P54 + $5.8)(Br5 + Bra1+ dra + ¢i7) + (5o 1) + he
+ 32 o(Pas+ Ga8) (s + dr11+ b1+ dr7) + (4 1) +he

5.2. Examples from higher Coxeter—Dynkin system

In general, a pair of generalized Dynkin diagrams (Di Francesco—Zuber diagrams in the
case of the SB) system) and of levels; andky can be associated with a conformal
theory whose central charge was recalled in the previous section. For {13 &lde, the
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(0,2)

G 01) 1,1)

(0,0 (1,0)  (00) (1,0) (2,0
Fig. 7. TheA; and. A generalized Dynkin.

corresponding generalized dual Coxeter numbers or altitudes are obtained from the relation
k = k—3. Takingk1+1 = ko, like inthe Virasoro minimal models, leads to a series of unitary
Ws-minimal models with central chargey% 6/5, 10/7, 11/7,5/3, 26/15, 98/55, 20/

11, 24/13,.... In what follows we discuss two of these unitary theories corresponding
to the(A1, A2) and the( A4, &s) pairs.

5.2.1. Thg A1, A2) model

Toric matrices and partition functiong he first member of this series,= 4/5, cor-
responds to th&.Aq, Ay) pair of diagrams with generalized Coxeter numberg, =
4, k 4,=5) (Fig. 7). We know that there are already two minimal (i}8%-minimal) models
associated with this value of central charge, the diagoaa) As) theory and the three
states Potts modéN 4, D4) already discussed in the previous section. We start considering
the toric matrices of typ@V 4, (A, 00) = W4, (1) with k£ = 1, 2 andx the weight of the
representation (also index of the vertices of the diagram), = {(00), (10), (01} and
4, = {(00), (11), (02), (10), (01), (20)}. Triality 6 is obviously defined on these two di-
agrams in the following way4; : 6(00) = 0,6(10) = 1,6(01) = 2 and.A> : 6(00) =
6(10) = 0,0(01) = 6(20) = 2,6(10) = 6(02) = 1. We have three toric matrices (also
graph matrices in this case) fgh:

100 00 1
W4, 000 =Wall=|0 1 0], W4 (100 =Wa21=|1 0 0],
00 1 010
010
W4, (0) =WyB81=]0 0 1], (1)
100

and six toric matrices (also graph matrices in this casepfor

100000
010000
001000

W4, (00) = W4 [1] = ,

Q0 =Walll=1 0 6 1 o o
000010
00000 1
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Wi, (10) = Wu,|[2] =

O O Fr O OO
OO Fr L, OO
OFr OO OO
R P OOOO
O OO OrFr K
O O O o r o

W4,(01) = W4,[3] = (Wa,(10)T,

W4,(20) = Wp,[4] = W4,(10) - W4,(10) — W4, (0D),

W4,(02) = W 4,[5] = (W4, (20)7,

Wa,(11) = Wy,[6] = W4,(10) - W4,(01) — W4,(00).
The fundamental twisted partition functions &ék, v) = (1/3)x W42 (A, v)x, with
WAL ] = WHAD[A] @ WHA2[y], a matrix of dimension3 x 6)2, and wherey =
x[241, 2] denotes the basis

{x[00, 00], x[10, 00], x[01, 0Q], x[00, 11], x[10, 11], x[01, 11], x[00, 02],

x[10, 02], x[01, 02], x[00, 10}, x[10, 10], x[01, 10], x[00, 01], x[10, 01],

x[01, 01], x[00, 20], x[10, 20], x[01, 20]}.
The matrixw (4142) (00, 00) = W AA2[1, 1]WAV[1]®@ W A2)[1]is the modular invariant;
in the bas€x}, it is just the identity matrix of siz€18, 18). We give another example,

w42 (00, 10) = WAA[1, 2]=wAD[1] ® W2)[2] which is one of the twisted
mass matrices:

WAL, A2) [1,2]
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As in the previous section, we are considering only the “fundamental toric matrices”, i.e.,
those of typew 4142, v] = WAV [, 00]® W42)[v, 00]. The more general ones would

be of the typeW ALA2[i v, 7, u] = WAV, v] ® WA, u]. A priori, we obtain in

this way 3x 6 = 18 toric matrices, but because of the identifications resulting from the
Z3 symmetries of thé/; Kac table, we obtain, at the end, only /B8= 6 distinct®
partition functionsZ[i, j]. The grougdZs acts on the pairs of vertices belonging to these two
diagrams in a geometrically very intuitive way (counter-clockwise on bbtland.A5) so

that characters are identified as follows:

x[00, 00] = x[10, 20] = x[01, 02] = xa,
x[00, 02] = x[10, 00] = x[01, 20] = x>,
x[00, 20] = x[10, 02] = x[01, 00] = xs,
x[00, 11] = x[10, 01] = x[01, 10] = xa,
x[00, 10] = x[10, 11] = [01, 01] = s,
x[00, 01] = x[10, 10] = [01, 11] = xe.

Implementation of thiZzs symmetry over the characters leads to the following table where
we list the six partition functions of the fori[i, j]:

Z[1,1] = Z[2, 4] = 3Z[3,5] = 32, |xil?

Z[1,2] = Z[2,6] = 3Z[3, 3] = x1x5+ x2x6 + x3xa+ xa(x2 + x5) + x5(x3+ Xe)
+ xe(X1 + Xx4)

Z[1,3] = Z[2,2] = 3Z[3, 6] = x1Xe + x2X4 + x3X5 + x4(x3 + Xe)
+ xs5(x1+ x4) + xe(x2 + xs)

Z[1,4] = Z[2,5] = 3Z[3, 1] = x1X3+ x2X1 + x3X2 + Xxax6 + x5X4 + X6 X5

ZIL, 5] = Z[2, 1] = 3Z[3, 4] = Z[L, 4]

Z[1,6] = Z[2,3] = 3Z[3, 2] = |x1 + xal> + Ix2 + x512 + |x3 + x6/? + X4 1xil?

The Potts model recovereBrom the value of the central charge (4/5) it is expected that
the present model is the Potts model in a new guise. It is indeed so and this has been
known for quite a while. However, here we want to show that not only we recover the
usual (undeformed) partition function, but also the whole set of (four) twisted partition
functions that were determined 8ection 4.3and denoted in boldface. We first calculate
conformal weights for the S{3) fields x from the generalizet!; Rocha—Cariddi recalled

in Section 4.3Remember that s labels are shifted byl, 1) compared with(A, 1) labels.

One finds#(x[00, 00]) = 0 and this is compatibfé with the SU2) fields for whichiz = 0

or 3, i.e.,¢11 andga1; h(x[00, 11]) = 2/5, compatible with the S(2) fields for which
h=2/50rh =7/5=(2/5 + 1, i.e.,¢21 and¢z1; h(x[00, 02]) = 2/3, compatible with

¢13, andh(x[00, 20]) = 2/3, also compatible witkp13; 4 (x[00, 10]) = 1/15, compatible

26 For aWs-minimal model of type Ay, A1), we would obtaink + 1) (k + 2)2(k + 3)/12 distinct functions.
27 Compatibility of weights of SI(2) versus S3) is only meaningful modulo integers.
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with ¢23 and h(x[00, 01]) = 1/15, also compatible witlpos. It is therefore natural to
consider the branching rules:

x[00, 00] — ¢11 + ¢a1, x[00, 11] — ¢21 + ¢31, x[00, 02] — ¢13,
x[00, 20] — ¢13, x[00, 10] — ¢23, x[00, 01] — ¢23. 2

If we now perform these substitutions in the twisted partition functions of the previous table,
we find

Z[11] — Zo, Z[12] — 2Z3, Z[13] — 2Z>, Z[14] — 71,
Z[15] — Z1, Z[16] — Z0+ Z2.

The six twisted partitions functions of this $8) minimal model can therefore be reinter-
preted in terms of the four twisted partitions functions of the(@UPotts model obtained
in Section 5.1.2

5.2.2. Tha A4, &) model

The (A4, £s) pair of diagrams with generalized Coxeter numb@rs, = 7, kg, = 8)
corresponds to #/3-minimal and unitary conformal model, with central charge 11/7.
One of these diagramgy) was displayed itsection 3.2and.A4 is of course similar tods
(displayed in the same section) but with only four levels. There are several possible theories
associated to this value of central charge, one is the diagonal theory associated to the pair
(A4, As), another is the one we are considering here. There are 15 toric matrices (also graph
matrices in this case) of typ# 4, (1, 00) = W 4,(A) with A labeling the vertices of the gen-
eralized Dynkin diagram, 4, = {(00), (30), (03), (11), (22), (10), (40), (21, (02), (13),
(20), (12, (04), (01), (3D} and 24 of typeWg, (0, 00) = Wg (o) with o = p x v labels
of the Oq&s) vertices (this graph was obtained [[h?] and is recalled below 8). Here
P, v € Agg = {lo, 13, 23, 20, 12, 15, 22, 25, 11, 14, 21, 24} labels the vertices of the gener-
alized&s Dynkin diagram. TheWg, (o) are matrices of dimension 24 21 whose entries
(i, j) corresponds to the vertices of the diagrdm= A(&s).

The general twisted partition functions are given by

Z(h, o) = 3WHALED (0, 0)

wherey = x[24, A45] and WA [, o] = WAD[A] @ W) [q].

Exponents of€s can be read, for example, from the modular invariant toric matrix
given in Section 3.2 These are particulads verticess = (s1,s2) given by the list
{(0,0),(2,2),(0,2),(3,2),(2,0),(2,3),(2,1),(0,5), (3,0, (0,3), (1,2), (5,0}. The
Z3 action onA4 gives, a priori, five equivalence classes labeled, for examplghy),
(0,1), (0, 2), (0, 3), (1, 1)}. All together, the untwisted A4, £5) model will therefore in-
volve in principle 12x 5 = 60 distinctWWs characters with conformal weights given by
the following table where we are including the t5sertices of.44 in a particular or-
der{(00), (40), (04}, {(22), (02), (20)}, {(03), (10), (3D}, {(13), (01), (30}, {(11), (12),
(21} to make manifest the occurrence of the five mentioned equivalence classes (this is
only a subset of the Kac table of the paits, As)):
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5y
=N

02 20 10 31 13 01 30 11 12 21

o
o
N
o
o
e
N
N
o
w

o0 0 2 20 3% 38 38 27 11 116 116 11 27 10 65 65
3 3 7 21 21 7 21 21 21 21 7 7 21 21
05 20 20 o 38 38 3 11 116 27 11 27 116 65 10 65
3 3 21 21 7 21 2t 7 21 7 21 21 7 2
50 20 o 20 38 3 38 116 27 11 27 116 11 65 65 10
3 3 21 7 21 2t 7 21 7 21 21 21 21 7
03 2 5% 4 3 5 173 3 149 233 65 65 8 19 29 113
4 12 12 28 84 84 28 84 84 84 84 28 28 84 84
20 4 9 59 173 3 5 233 3 149 8 65 65 29 113 19
12 4 12 8 28 8 8 28 8 28 8 B8 8 84 28
32 % 4 9 5 173 39 149 233 3 65 8 65 113 19 29
12 12 4 B8 8 28 8 8 28 8 28 8 8 28 84
30 2 4 5 3 13 5 8 65 65 233 149 3 19 113 29
4 T 12 28 B84 B8 28 B4 B4 B4 B84 28 28 84 84
23 5% 9 11 5 39 1/3 65 8 65 3 233 149 113 29 19
2 4 12 8 28 B84 8 28 8 28 8 B4 8 8 28
o2 4 5 9 13 5 39 65 65 8 149 3 233 29 19 113
12 12 4 84 84 28 84 84 28 84 28 84 84 28 84
22 3 2 3 1 17 17 6 2 11 11 32 6 3 2 2
3 3 7 21 21 7 21 21 21 21 7 7 21 21
12 5 3 5§ w 1 17 11 6 32 6 i 32 2 2 3
3 3 21 7 21 21 7 21 7 21 21 21 21 7
21 2 5 3 ¥ 1w 1 32 11 6 32 6 a2 3 2
3 3 21 21 7 21 21 7 21 7 i 21 7 21

The Ocneanu graph @& has 24 points and the intersection of the vector spaces spanned
by the 12 left and the 12 right generators—ambichiral subspace—is of dimension 6 (gen-
erators are of the typep®1; = 1;®1p) (Fig. 8). The supplementary subspace has also
dimension 6. We therefore expect to obtain four setsxofBtwisted fundamental partition
functions.

Fig. 8. Ocneanu graph fds.
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If we further restrict our attention to those fundamental twisted partition functions which
only involve the fields appearing in the undefornietl;, £5) model (labeled by the above
60 conformal weights), i.e., if we only take the ambichiral points into account, we expect
5 x 6 = 30 distinct cases. Notice that the description of #Ms-minimal model is very
similar to the one that we made for the Virasoro minimal model of g, Es).

We shall not give this full list of 30 partition functions but only two of them: those
associated with toric matricé®oo,00(A4) ® Wiye1,(E5) andWop,00(As) ® Wiye1,(Es):

Z[00, 1o x 1] = 3, Ix[i, 05]+ x[i, 21]|% + |x[i, 00] + x[i, 22]|2 + | x[i, 20] + x[i, 23]?
+ I x[i, 03] + x[i, 30112 + | x[i, 021 + x[i, 32]1% + | x[i, 12] + x[i, 50]]2

Z[00, 19 x 1] = »;(x[i, 02]+ x[i, 32]) (x[i, 05]+ x[i, 21]) + (x[i, 03]+ x[i, 30] (x[i, 00]
+ x[i, 22]) + (x[i, 12] + x[i, 50D (x[i, 20] + x[i, 23]) + hc

where the sums are ovee (0, 0), (0, 1), (0, 2), (0, 3), (1, 1) vertices ofA4.
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